A modern maximum-likelihood theory for high-dimensional logistic regression

by Pragya Sur and Emmanuel J. Candés

ML inference

- Theory associated with ML estimators makes them so appealing
- Assume iid sample y_1, \ldots, y_n from $f_{\boldsymbol{\theta}}(y)$
- ▶ Unknown θ : MLE $\widehat{\pmb{\theta}}$ maximizes $\ell(\pmb{\theta}) = \sum_i \log f_{\pmb{\theta}}(y_i)$
- Other associated quantity of importance: expected Fisher information

$$\mathcal{I}_{\boldsymbol{\theta}} = \mathsf{E}_f \left\{ \frac{\partial^2 \ell}{\partial \boldsymbol{\theta}^\mathsf{T} \partial \boldsymbol{\theta}} \right\}$$

ML inference

- Theory associated with ML estimators makes them so appealing
- Assume iid sample y_1, \ldots, y_n from $f_{\boldsymbol{\theta}}(y)$
- ▶ Unknown θ : MLE $\widehat{\pmb{\theta}}$ maximizes $\ell(\pmb{\theta}) = \sum_i \log f_{\pmb{\theta}}(y_i)$
- Other associated quantity of importance: expected Fisher information

$$\mathcal{I}_{\boldsymbol{\theta}} = \mathsf{E}_f \left\{ \frac{\partial^2 \ell}{\partial \boldsymbol{\theta}^\mathsf{T} \partial \boldsymbol{\theta}} \right\}$$

Why? Asymptotically, as $n \to \infty$

$$\widehat{\boldsymbol{\theta}} \sim \mathcal{N}(\boldsymbol{\theta}, \mathcal{I}_{\boldsymbol{\theta}}^{-1})$$

ML in logistic regression setting

▶ Logistic regression independent pairs: (y_i, \mathbf{x}_i) with $y_i \in \{0, 1\}$ and $\mathbf{x}_i \in \mathbb{R}^p$

$$\Pr\{y_i = 1 | \mathbf{x}_i\} = \rho'(\mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}) = \frac{\mathrm{e}^{\mathbf{x}_i^\mathsf{T}} \boldsymbol{\beta}}{1 + \mathrm{e}^{\mathbf{x}_i^\mathsf{T}} \boldsymbol{\beta}}$$

 $oldsymbol{eta} \in \mathbb{R}^p$ unknown parameters: using the MLE gives approximate pivotal quantity

ML in logistic regression setting

▶ Logistic regression independent pairs: (y_i, \mathbf{x}_i) with $y_i \in \{0, 1\}$ and $\mathbf{x}_i \in \mathbb{R}^p$

$$\Pr\{y_i = 1 | \mathbf{x}_i\} = \rho'(\mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}) = \frac{\mathrm{e}^{\mathbf{x}_i^\mathsf{T}} \boldsymbol{\beta}}{1 + \mathrm{e}^{\mathbf{x}_i^\mathsf{T}} \boldsymbol{\beta}}$$

 $oldsymbol{eta} \in \mathbb{R}^p$ unknown parameters: using the MLE gives approximate pivotal quantity

$$\sqrt{\mathcal{I}_{\beta,jj}}\left(\widehat{\beta}_j - \beta_j\right) \sim \mathcal{N}(0,1)$$

ML in logistic regression setting

▶ Logistic regression independent pairs: (y_i, \mathbf{x}_i) with $y_i \in \{0, 1\}$ and $\mathbf{x}_i \in \mathbb{R}^p$

$$\Pr\{y_i = 1 | \mathbf{x}_i\} = \rho'(\mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}) = \frac{\mathrm{e}^{\mathbf{x}_i^\mathsf{T}} \boldsymbol{\beta}}{1 + \mathrm{e}^{\mathbf{x}_i^\mathsf{T}} \boldsymbol{\beta}}$$

 $oldsymbol{eta} \in \mathbb{R}^p$ unknown parameters: using the MLE gives approximate pivotal quantity

$$\sqrt{\mathcal{I}_{\boldsymbol{\beta},jj}}\left(\widehat{\beta}_{j}-\beta_{j}\right)\sim\mathcal{N}(0,1)$$

$$rac{\widehat{eta}_j - eta_j}{ ext{s.e.}(\widehat{eta}_j)} \sim \mathcal{N}(0,1)$$
 classic z test statistic

Bias

► Test usually of most interest is

$$H_0:\beta_j=0 \qquad H_A:\beta_j\neq 0$$

$$z=\frac{\widehat{\beta}_j}{\mathrm{s.e.}(\widehat{\beta}_j)} \qquad \text{and} \qquad p=2[1-\Phi(z)],\, z>0$$

e.g. reject when p < 0.05

Bias

Imagine s.e. being used is biased (deflated $\nu < 1$):

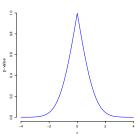
$$z_{
m true} = rac{\widehat{eta}_j}{ {m v} \, {
m s.e.}_{
m true}(\widehat{eta}_j) }$$
 i.e. bigger than should

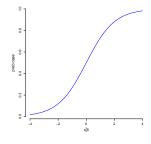
Imagine the estimate $\widehat{\boldsymbol{\beta}}$ is biased

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta}_{true} + \mathbf{b}$$

$$\mathbf{x}_i^\mathsf{T} \widehat{\boldsymbol{\beta}} = \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}_\mathsf{true} + \mathbf{x}_i^\mathsf{T} \mathbf{b}$$

i.e. pushes further out





Aspect ratio asymptotics

▶ This paper makes the point that for *logistic regression* if $n \to \infty$ while p is fixed or remains small i.e. p = o(n) then $\widehat{\beta}_j$ and

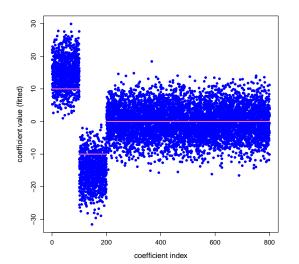
$$\frac{\widehat{\beta}_j}{\text{s.e.}(\widehat{\beta}_j)} \sim \mathcal{N}(0, 1)$$

are fine.

▶ However, if $p/n \to \kappa$ as $n \to \infty$, that is p is non-negligible compared to n, something like $p = o(n^{1+\alpha}), 0 < \alpha < 1$, then there is bias in both the MLE and the standard error

Example for β

n=4000, p=800, simulate with $\beta_j=10, j=1,\ldots,100$, $\beta_j=-10, j=101,\ldots,200$, $\beta_j=0$ otherwise.



Remedy

► To test the hypothesis

$$H_0: \beta_i = 0 \qquad H_A: \beta_i \neq 0$$

adjust test statistic for computing the p-value

$$\frac{\widehat{\beta}_j}{\sigma^*}$$

where σ^* results from solving the non-linear system of equations.

▶ One might expect the bias to creep into other inferential activities as well. This is indeed the case, as the likelihood ratio statistic is shown to be an adjusted χ^2 under the null hypothesis.