
Introduction
to Gaussian

Mixture
Models

Joshua Tobin

Outline

Q1

Q2

Q3

Q4

Q5

Introduction to Gaussian Mixture Models

March 3, 2021

Joshua Tobin



Introduction
to Gaussian

Mixture
Models

Joshua Tobin

Outline

Q1

Q2

Q3

Q4

Q5

Outline

1 What is a Gaussian Mixture Model (GMM)?

2 How can we use GMMs to cluster data?

3 What are the prominent methods for clustering data with
GMMs?

4 Do these methods have drawbacks?

5 Can we improve them?
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1 What is a Gaussian Mixture Model?

Linear superposition of Gaussian components, aimed to provide
richer class of density models.

 

 

 

 

Aim is approximation of complex densities by adjusting means
µµµk and covariances ΣΣΣk of K component Gaussians.
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1 What is a Gaussian Mixture Model?

So we consider a superposition of K Gaussian densities of the
form:

p(x) =
K∑

k=1

πkN (x|µµµk ,ΣΣΣk),

which is equivalent to:

p(x) =
K∑

k=1

p(k)p(x|k)

• πk = p(k) - prior probability of picking the kth
component.

• N (x|µµµk ,ΣΣΣk) = p(x|k) - probability of x conditioned on k .

We seek µµµk ,ΣΣΣk and p(k |x)
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2 How can we use GMMs to cluster data?

If we have data x1, . . . , xn which we wish to model using a
mixture of Gaussians for group assignment:

• Introduce K -dimensional 1-of-K variable z with marginal
p(zk = 1) = πk .

• Now the conditional distribution of x given z is

p(x|z) =
K∏

k=1

N (x|µµµk ,ΣΣΣk)zk .

• So taking p(z)p(x|z) and summing over z yields

p(x) =
∑
z

p(z)p(x|z) =
K∑

k=1

πkN (x|µµµk ,ΣΣΣk).
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2 How can we use GMMs to cluster data?

We have

• X - n × d data matrix

• Z - n × K latent variable matrix

• π - prior component probabilities

• µµµ - d-dimensional component mean
vectors

• ΣΣΣ - d × d component covariance
matrices

Popular approach formulates the log-likelihood function:

ln p(X|π,µµµ,ΣΣΣ) =
n∑

i=1

ln

{
K∑

k=1

πkN (xi |µµµk ,ΣΣΣk)

}
.

Problem: This likelihood is very difficult to maximise.



Introduction
to Gaussian

Mixture
Models

Joshua Tobin

Outline

Q1

Q2

Q3

Q4

Q5

3 Some prominent methods for clustering data with GMMs?

Expectation Maximisation (EM) - a powerful and popular
approach.

1 Initialise µµµk , ΣΣΣk and πk and evaluate the log likelihood.

2 E step - Compute the responsibilities:

p(zik = 1|xxx i ) = γ(zik) =
πkN (xi |µµµk ,ΣΣΣk)∑K
j=1 πjN (xi |µµµj ,ΣΣΣj)

.
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3 Some prominent methods for clustering data with GMMs?

Expectation Maximisation (EM) - a powerful and popular
approach.

3 M step - Update the parameters:

µµµnew
k =

1

nk

n∑
i=1

γ(zik)xi

ΣΣΣnew
k =

1

nk

n∑
i=1

γ(zik)(xi −µµµnew
k )(xi −µµµnew

k )T

πnew
k =

nk
n

where nk =
∑n

i=1 γ(zik).

4 Evaluate the log likelihood and check for convergence of
either the parameters or the log likelihood.
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3 Some prominent methods for clustering data with GMMs?

A vast literature exists describing ways to find GMMs including

• Variational Inference
• Deterministic approximation scheme which assumes latent

variable and parameter distributions can be factorised.
• Similar computational burden to EM, but various

improvements in approach.

• Agglomerative approaches, based on HAC and HDBSCAN.

• Spectral methods involving decomposition.

• Methods which aim to maximise log-likelihood numerically.
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4 Do these methods have drawbacks?

EM struggles if initialisation is poor.

• Non-convexity of likelihood comes from the
parametrisation of the model components.

• Set of all mixture models is not convex when the
distribution has free parameters.

Escape Route:
Assuming the data is dense enough that there is always a data
point close to the real centre ...

... we can restrict possible centres to the set of data points ...

... leading to a convex cost function which unconditionally
converges to global minimum.
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4 Do these methods have drawbacks?

Lashkari & Golland (2007) formulate a mixture model

Q(x) =
n∑

j=1

qjN (x|xj)

where

• qj - prior probability of the jth component.

• N (x|xj) - Normal distribution with expectation parameter
equal to the jth data point.

which yields the normalised log likelihood over qj :

L({qj};X) =
1

n

n∑
i=1

ln


n∑

j=1

qjN (x|xj)


=

1

n

n∑
i=1

ln


n∑

j=1

qje
−β‖xi−xj‖2

2


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4 Do these methods have drawbacks?

We can represent this likelihood in terms of KL-Divergence:

D(P̂‖Q) = −
∑
x∈X

P̂(x) lnQ(x)−H(P̂) = −L({qj};X) + c ,

where P̂(x) = 1/n, the empirical distribution.

We update the component prior probabilities with

q
(t+1)
j = q

(t)
j

∑
x∈X

P̂(x)N (x|xj)∑n
j ′=1 q

(t)
j ′ N (x|xj ′)

.

This is guaranteed to converge to a global optimum.
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4 Do these methods have drawbacks?

Pilanci et. al. improve on this formulation with a cardinality
penalty on {qj}:

max
1Tq=1,q≥0

n∑
i=1

ln


n∑

j=1

qje
−β‖xi−xj‖2

2

− λcard(q),

where the parameter λ can easily return a specified number of
components.

So by using convex mixture models:

• We have gained the ability to locate global optimum.

• We have surrendered varying Σ.

• Still have a problem with slow convergence (Takahashi,
2011).
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4 Do these methods have drawbacks?

Pilanci et. al. improve on this formulation with a cardinality
penalty on {qj}:

max
1Tq=1,q≥0

n∑
i=1

ln


n∑

j=1

qje
−β‖xi−xj‖2

2

− λ

maxi qi
,

where the parameter λ can easily return a specified number of
components.

So by using convex mixture models:

• We have gained the ability to locate global optimum.

• We have surrendered varying Σ.

• Still have a problem with slow convergence (Takahashi,
2011).
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5 Can we improve them?

Aim is to build a fast exemplar-based GMM in which the
covariance matrices are free from constraints

Propose selecting initial K exemplars using peak-finding

• Set local density ρi =
∑K

l=1 exp(−‖xxx i − xxx
(l)
i ‖2)

• Compute minimum distances to points that have higher
local density values

δi =

{
max{‖xxx i − xxx j‖2 : 1 ≤ j ≤ n}, if ρi is the largest;
min{‖xxx i − xxx j‖2 : 1 ≤ j ≤ n, ρj > ρi}, otherwise.

For each exemplar, we calculate a rough estimate of the
covariance matrix, Σk using a set of nearest neighbours.
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5 Can we improve them?

Given the exemplar set and covariance estimates:

• E - K × p exemplar matrix

• D - distance matrix, dij =
√

(xi − ej)TΣ−1
j (xi − ej)

• Q - responsibility matrix.

Specifying the following optimisation problem:

min
{QQQ i·∈∆}ni=1

K∑
j=1

DDDT
·jQQQ ·j +

ρ

2
‖EEETQQQT111n−XXXT111n‖2

2 +λcard(QQQT111n),

This objective is three-fold.
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5 Can we improve them?

Given the exemplar set and covariance estimates:

• E - K × p exemplar matrix

• D - distance matrix, dij =
√

(xi − ej)TΣ−1
j (xi − ej)

• Q - responsibility matrix.

Specifying the following optimisation problem:

min
{QQQ i·∈∆}ni=1

K∑
j=1

DDDT
·jQQQ ·j +

ρ

2
‖EEETQQQT111n−XXXT111n‖2

2+λcard(QQQT111n),

1 Minimising total within-cluster variance.
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5 Can we improve them?

Given the exemplar set and covariance estimates:

• E - K × p exemplar matrix

• D - distance matrix, dij =
√

(xi − ej)TΣ−1
j (xi − ej)

• Q - responsibility matrix.

Specifying the following optimisation problem:

min
{QQQ i·∈∆}ni=1

K∑
j=1

DDDT
·jQQQ ·j+

ρ

2
‖EEETQQQT111n −XXXT111n‖2

2 +λcard(QQQT111n),

3 Matching empirical moments to population moments.
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5 Can we improve them?

Given the exemplar set and covariance estimates:

• E - K × p exemplar matrix

• D - distance matrix, dij =
√

(xi − ej)TΣ−1
j (xi − ej)

• Q - responsibility matrix.

Specifying the following optimisation problem:

min
{QQQ i·∈∆}ni=1

K∑
j=1

DDDT
·jQQQ ·j +

ρ

2
‖EEETQQQT111n−XXXT111n‖2

2+ λcard(QQQT111n) ,

3 Purifying the exemplar set.
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5 Can we improve them?

The objective can be split into K convex programs, each solved
in parallel.

min
ν=1,...,K

 min
{QQQ i·∈∆}ni=1

K∑
j=1

DDDT
·jQQQ ·j +

ρ

2
‖EEETQQQT111n −XXXT111n‖2

2 +
λ

111T
n QQQ .ν

 ,

Once the responsibility matrix Q is returned:

• Still need to obtain clustering results

• Propose using DA-EM to compute updated component
priors and update covariance matrices

• Re-running for different values of λ and use criteria to
select best model.
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5 Can we improve them?

Questions still to be answered:

1 Trade-off between limiting number of centres with freer
covariance matrices?

2 Better approach for updating component priors and
covariance matrices?

3 Can we incorporate the different covariance structures of
Celeux & Govaert?

4 What is overall complexity?

Thanks for listening, any advice or recommended reading would
be greatly appreciated!
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