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® What is a Gaussian Mixture Model (GMM)?

® How can we use GMMs to cluster data?

©® What are the prominent methods for clustering data with
GMMs?

O Do these methods have drawbacks?

® Can we improve them?
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® What is a Gaussian Mixture Model?
Q1

Linear superposition of Gaussian components, aimed to provide
richer class of density models.

Aim is approximation of complex densities by adjusting means
i and covariances X, of K component Gaussians.
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@ What is a Gaussian Mixture Model?
form:
Q1

So we consider a superposition of K Gaussian densities of the

D me A (Xlak, B)
k=1
which is equivalent to

K

Z p(k)p(x|k)

k=1

e 7 = p(k) - prior probability of picking the kth
component.

(x|pr, k) = p(x[k)

probability of x conditioned on k
We seek i, X and p(k|x)
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® How can we use GMMs to cluster data?
Joshua Tobin

If we have data xi,

X, which we wish to model using a
mixture of Gaussians for group assignment

e Introduce K-dimensional 1-of-K variable z with marginal
p(Zk = ].) = Tk.

e Now the conditional distribution of x given z is

K

p(x|z) = (xlpic, i)™
k=1
e So taking p(z)p(x|z) and summing over z yields
-3 et -

k=1

K
D mwe N (xlks Te)
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We have
e X - n x d data matrix
Q2 e Z - nx K latent variable matrix
e 7 - prior component probabilities

e u - d-dimensional component mean
vectors

e ¥ - d x d component covariance
matrices

Popular approach formulates the log-likelihood function:

n K
Inp(X|m, 1, £) = > In > mpe (X, Zi)
i=1 k=1

Problem: This likelihood is very difficult to maximise.
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©® Some prominent methods for clustering data with GMMs?

Expectation Maximisation (EM) - a powerful and popular
approach.

@ Initialise py, s and 7, and evaluate the log likelihood.
® E step - Compute the responsibilities:

p(zik = 1|x;) =

= 'Y(Zik) =

TN (Xi |k, k)
S A (%l )
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©® Some prominent methods for clustering data with GMMs?

Expectation Maximisation (EM) - a powerful and popular
approach.

©® M step - Update the parameters:

new 1 "
pr = — > A(zi)xi
M
1 n
) DR T
i—1
7_(.Ir:ew _ Ny

n

where ne = > 1 v(zik).

O Evaluate the log likelihood and check for convergence of
either the parameters or the log likelihood.
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Joshua Tobin ® Some prominent methods for clustering data with GMMs?

A vast literature exists describing ways to find GMMs including
e Variational Inference

e Deterministic approximation scheme which assumes latent
variable and parameter distributions can be factorised.

e Similar computational burden to EM, but various
improvements in approach.

e Agglomerative approaches, based on HAC and HDBSCAN.
e Spectral methods involving decomposition.

e Methods which aim to maximise log-likelihood

numerically.
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Joshua Tobin
EM struggles if initialisation is poor.

e Non-convexity of likelihood comes from the
Q4

parametrisation of the model components.

e Set of all mixture models is not convex when the
distribution has free parameters.

Escape Route:

Assuming the data is dense enough that there is always a data
point close to the real centre ...

we can restrict possible centres to the set of data points ...

... leading to a convex cost function which unconditionally

converges to global minimum.
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® Do these methods have drawbacks?

Lashkari & Golland (2007) formulate a mixture model

Z qN
Q4

(x|x;)
where

e g; - prior probability of the jth component.

e ¥ (x|x;) - Normal distribution with expectation parameter
equal to the jth data point

which yields the normalised log likelihood over g;

L({q;}; Z|n qu

(x|x;)

1 n n
= — E |n E qjefﬁ”xiij”g
n-< °
i=1 j=1
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® Do these methods have drawbacks?

> P(x)

)In Q(x
xeX

A

We can represent this likelihood in terms of KL-Divergence
D(P|Q) =

H(P) =

where P(x) = 1/n, the empirical distribution

—L({q;}:

X) +c,

We update the component prior probabilities with

) — gl PO (xIxj)
! xGXZ’—lq’ A (x[xj7)

This is guaranteed to converge to a global optimum

0> «4F» «E» «=)>»

DA



Introduction

to Gaussian

Mixture

Models

Joshua Tobin

Outline

Q2

Q3

Q4

Q5

N
|
v
a
o
v



Introduction
to Gaussian
Mixture

e ® Do these methods have drawbacks?
Joshua Tobin

Pilanci et. al. improve on this formulation with a cardinality
penalty on {q;}:

n

n
— Bllx—x, |2
A max E In g gje Bllxi—=xll3 — Acard(q),
17q=1,>0 % ,

i=1 j=1

where the parameter A can easily return a specified number of
components.

So by using convex mixture models:

e We have gained the ability to locate global optimum.
e We have surrendered varying ¥.

e Still have a problem with slow convergence (Takahashi,
2011).
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O Do these methods have drawbacks?

Pilanci et. al. improve on this formulation with a cardinality
penalty on {q;}:

n

‘ A
max E In E qjefﬁllxi*’(jﬂg
Tq=1.q>

17a=1,920 5= j=1

max; q;’
where the parameter A can easily return a specified number of
components.

So by using convex mixture models:
e We have gained the ability to locate global optimum.
e We have surrendered varying ¥.

e Still have a problem with slow convergence (Takahashi,
2011).
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® Can we improve them?

Aim is to build a fast exemplar-based GMM in which the
covariance matrices are free from constraints

Propose selecting initial K exemplars using peak-finding
e Set local density p; = Zﬁl exp(

I
~lxi = x{”2)
e Compute minimum distances to points that have higher
local density values

5 — { max{||x; — xjll2 - 1 < j < n},
=

min{lxi —xl2: 1< < n, g > pi},

if p; is the largest;
otherwise.
For each exemplar, we calculate a rough estimate of the

covariance matrix, X using a set of nearest neighbours.
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® Can we improve them?

Given the exemplar set and covariance estimates:
e E - K x p exemplar matrix

e D - distance matrix, djj = \/(x,- - ej)TZfl(x; —€j)
e Q - responsibility matrix.
Specifying the following optimisation problem:
K
QM ; DTQ,;+ gHETQTln —XT1,)2+ Acard(QT1,),
This objective is three-fold.
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® Can we improve them?

Given the exemplar set and covariance estimates:
e E - K x p exemplar matrix

e D - distance matrix, djj = \/(x,- —e) L (xi —e)
e Q - responsibility matrix.
Specifying the following optimisation problem:

min
{Qi.en}r

K
> DQ; +LIETQT1,—XT1,|3+Acard(@T1,).
j=1

@ Minimising total within-cluster variance.
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® Can we improve them?

Given the exemplar set and covariance estimates:
e E - K x p exemplar matrix

e D - distance matrix, djj = \/(x,- - ej)TZfl(x; —ej)
e Q - responsibility matrix.

Specifying the following optimisation problem:

K
min
{QieA} Jz_;

DIQ.+ g||ETQT1n = XT1,)2 +hcard(QT1,),

©® Matching empirical moments to population moments.
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® Can we improve them?

Given the exemplar set and covariance estimates
e E - K x p exemplar matrix

e D - distance matrix, djj = \/(x,- —e) L (xi —e)
e Q - responsibility matrix.

Specifying the following optimisation problem:

min

{Qi.ea}r

K
> D_JT-Q.J-+§HETQTI,,—XT1n||§+ Acard(Q71,)
j=1

® Purifying the exemplar set.
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® Can we improve them?

The objective can be split into K convex programs, each solved
in parallel.

K
A
[ i DTO. -+ PIET T XT1, 24 —2
V:T,I.?,K {Q{EE}LI ; - QJ + 2 ” Q ||2 + IIQV y
Qs
Once the responsibility matrix Q is returned:

e Still need to obtain clustering results
e Propose using DA-EM to compute updated component

priors and update covariance matrices

e Re-running for different values of A and use criteria to
select best model.
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Questions still to be answered:
@ Trade-off between limiting number of centres with freer
covariance matrices?
o ® Better approach for updating component priors and
covariance matrices?
©® Can we incorporate the different covariance structures of
Celeux & Govaert?

® What is overall complexity?

Thanks for listening, any advice or recommended reading would
be greatly appreciated!
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