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Outline

Presentation will have three sections.

1 Introduction and motivation of the paper (Introduction)

2 Description of the CPF method (CPF)
• Introduce distance metric for mixed data
• Component-wise peak-finding (CPF)
• Automatic center selection method

3 Brief experimental study detailing interesting features of
CPF (Experimental Study)
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Introduction - Motivation

Unsupervised Learning is a central problem in data science

Vital in its own right but also with applications in other
learning domains & methods

Important that capability of clustering algorithms are not
outstripped by methods in application domains
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Introduction

Applications of unsupervised methods in other learning
domains include:

• Cluster-based resampling algorithms

• Weakly-supervised learning settings

• Even within classic supervised learning algorithms, like
CART

Crucial that clustering methods keep up with developments in
these fields.
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Introduction - Motivation

So what would we want a clustering method to be?

1 The type of clusters we want to detect:
• Applications contain clusters of varying shape, size &

density
• Should not need to know the number of clusters in advance

2 These cluster should be detected by an algorithm which:
• Returns the same results consistently
• Can be adapted to different settings
• Runs in a reasonable time (subquadratic at least)
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Introduction - Related Work
The Density Peak-Finding (DPC) (Rodriguez and Laio, 2014)
algorithm is a potential solution to some of these issues.

“ Cluster centers...

..are surrounded by neighbors with lower local density..

.. and they are at a relatively large distance from
any points with a higher local density ”
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Introduction - DPC Method
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1 Plot a decision graph of local density against distance to
nearest neighbor of higher density.
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Introduction - DPC Method
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2 Select extreme points as cluster centers.
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Introduction - DPC Method

 

 

3 Proposed cluster centers on original data.
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Introduction - DPC Method

 

 

4 Assign each instance to the same cluster as its nearest
neighbor of higher local density.
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Related Work

DPC has been adapted & extended in three main ways:

1 For mixed attribute data
• Ding et al. (2017) use an exponential dissimilarity function

to incorporate categorical attributes

2 With local estimates of the density
• Yaohui et al. (2017) applies kernel functions on nearest

neighbors

3 To detect clusters automatically
• Liu et al. (2019) describe ways to compute thresholds for

the decision graph
• Yaohui et al. (2017) iteratively merge candidate clusters

together
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CPF - Our Method

Motivated by DPC, we develop a method for clustering big
data with mixed attributes.

1 Define a new distance metric which balanced contributions
from numerical and categorical attributes.

2 Utilize the concept of ‘components’ from graph theory to
detect clusters of varying density.

3 Introduce a new automatic center selection method.

With fast k-nearest neighbor method, the complexity of our
method is O(n log n).
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CPF - Distance Metric

We seek a distance metric with balanced contributions from
numerical & categorical attributes.

• Numerical attributes are
standardised by subtracting the
mean and scaling by standard
deviation.

• Ordinal attrbibutes are first encoded
as integers and then standardised in
the same way.

• Categorical/Nominal attributes are
one-hot encoded using dummy
variables. For a feature with q
categories, q dummy variables are
required.
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CPF - Distance Metric

The distance between the two points xxx i and xxx is defined as
follows:

d(xxx i ,xxx j)
2 =

p1∑
l=1

ρl‖
√
www l ◦ (bbbli − bbblj)‖2

2 + ‖zzz i − zzz j‖2
2,

where ‖ · ‖2 is the Euclidean norm.

• For numerical and ordinal variables, Euclidean norm is
used as in DPC.

• For binarised categorical attributes, weights are used in
conjunction with the Euclidean norm.
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CPF - Distance Metric

d(xxx i ,xxx j)
2 =

p1∑
l=1

ρl‖
√

www l ◦ (bbbli − bbblj)‖2
2 + ‖zzz i − zzz j‖2

2,

The two weights are:

1 {www1, . . . ,wwwp1} - Matrix of weights applied to each binary
feature computed from category frequency. Used to
weight importance of features.

2 ρ1, . . . , ρp1 - Scalar weights applied to ensure expected
contribution of each categorical feature matches
standardised numerical features.
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CPF - Motivations
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We apply DPC to simulated data with two numerical features
to explain its drawbacks and the motivations for our method.
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CPF - Motivations
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1 Difference in density between the clusters leads to

incorrect centers suggested in the middle plot.
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CPF - Motivations
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2 Even selecting the top blue and red points leads to

incorrect assignment of instances.
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CPF - Motivations
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3 Correct number of cluster centers is not obvious from this

representation.
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CPF - Method

Issues 1 & 2 are caused by DPC not adequately capturing
underlying structure of the data

Shared Nearest Neighbors

• Idea is to build a graph where every
instance in the dataset is a vertex
and an edge between vertices exists
if they are both in k-nn of each
other

• Used as a standalone clustering
method in Ertöz et al. (2003)

• Effective at detecting noise points
and separates areas with different
density
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CPF - Method

Components can reveal underlying patterns of the data.

 

 

If two instances lie in different components, they are highly
likely to belong to different clusters

We propose applying DPC on each individual component set,
Component-wise Peak Finding (CPF)
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CPF - Method

The Algorithm:

1 Create a shared nearest neighbor graph, with the
parameter k.

2 Remove points with few incoming edges as outliers and
create the component sets.

3 For each component set:
• for every instance in the component set, find the K nearest

neighbors
• using these K nearest neighbors, calculate the local density

as
∑

xxx∈NK (xxx i )
exp(−d(xxx i ,xxx))

• find the distance to the nearest neighbor of higher density
for each instance

4 Select the cluster centers for each component set.

5 For a non-center point, assign it to the same cluster as its
nearest neighbor of higher local density.
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DPC Graphs
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CPF Graphs
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CPF - Center Selection

• Separating the data into components does improve
discrimination of centers

• But analysing multiple decision graphs is not feasible in
any application

• We develop an automatic center selection method
• Computing the local density of each instance requires

detecting the K nearest neighbors in the component set
• The centers proposed by the decision graphs form

partitions on the K -nn graph
• Propose assessing the partitions using methods from graph

community detection
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CPF - Center Selection

• A cut on the graph G (C) partitions component C into two
non-empty subsets S and S̄ .

• The conductance of a cut (S , S̄) of C is:

Φ(S , S̄ ;G (C)) =

∑
xxx i∈S ,xxx j∈S̄ w({xxx i ,xxx j})
min{w(S),w(S̄)}

.
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CPF - Center Selection
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(b) Φ(S , S̄ ;G(C)) = 0.04

• Captures notion that clusters (or communities) should have
stronger connections within than without.

• Shown that local minima of conductance values correspond to
best clusterings Leskovec et al. (2008).
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CPF - Center Selection

• The peak-finding method automatically suggests
candidate cluster centers.

• These are found by sorting the product of local density
and distance to nearest neighbor of higher density in
decreasing order.

• Selecting instances as candidate centers defines a partition
of the nearest neighbor graph for the component G (C)

• We use these partitions to answer two questions:

1 Does the component set contain more than one cluster?
2 If so, how many cluster centers should be selected?
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CPF - Center Selection

• We cannot assume that more than one cluster exists in
each component.

• Heuristic: ‘Internal connections are stronger & more
prevalent than external connections’

• So, taking the top two cluster centers proposed for a given
component:

1 Find the minimal value k̃ such that the clusters are
connected.

2 Calculate the conductance of the cut between the clusters.

3 Set k̂ = k̃ + 1. Create and calculate the conductance on
the new graph.

4 If the conductance increases, then component contains
only one cluster. Otherwise, store the conductance value
and continue.
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CPF - Center Selection
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(a) Φ(S , S̄ ;G(C)) = 0.02477
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(b) Φ(S , S̄ ;G(C)) = 0.04329
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CPF - Center Selection
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(b) Φ(S , S̄ ;G(C)) = 0.04792
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CPF - Center Selection

Once we determine more than one cluster exists in a
component, we must determine how many?

2 For each center proposed by the clustering method:
• Compute the conductance of each proposed cluster in the

clustering.

• Record the maximum conductance for each clustering, as
Φj where j is the number of centers in the clustering.

3 The final clustering has nclust centers where
nclust = arg minj Φj .

This process is repeated for each component.
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(a) Φ(S , S̄ ;G(C)) = 0.0247
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CPF - Complexity

• Computing the graph G (X,E ) is O(n log(n)) using fast
k-nn methods (Zhang et al., 2013)

• Finding the nearest neighbor of higher density is also
taxing

• If a point with higher density can be found in the K
neighbors computed in the density step, no computation is
needed.

• Else, a broad search must be undertaken

• If the proportion that require a broad search is p, the
complexity is O(p|C|2); p is typically less than 1% for large
components.

• So the complexity CPF is O(n log(n) + n2
c), where nc is

the size of the largest component.
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Experimental Study - Numerical

Gen AD
k-means Clust++ k-means CPF

ARI 0.701 0.761 0.001 0.845
PS 0.858 0.989 0.310 0.916

Dermatology F1 0.241 0.003 0.159 0.304
NMI 0.849 0.842 0.010 0.873
CA 0.196 0.003 0.165 0.304
ARI 0.101 0.002 0.013 0.386
PS 0.905 0.450 0.898 0.960

Page F1 0.010 0.309 0.201 0.001
Blocks NMI 0.076 0.031 0.006 0.273

CA 0.049 0.420 0.152 0.001
ARI 0.034 0.000 0.001 0.139
PS 0.477 1.000 0.449 0.559

Wine F1 0.155 0.064 0.188 0.139
Quality NMI 0.069 0.000 0.002 0.076

CA 0.118 0.033 0.146 0.029
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Experimental Study - Categorical

Gen AD
k-modes Clust++ k-means CPF

ARI 0.011 0.007 0.028 0.612
PS 0.653 0.040 0.655 1.000

TicTacToe F1 0.148 0.002 0.501 0.015
NMI 0.004 0.091 0.014 0.596
CA 0.164 0.023 0.491 0.015
ARI -0.001 0.001 0.140 0.207
PS 0.776 0.166 0.775 0.780

Breast F1 0.442 0.013 0.510 0.083
Cancer NMI -0.003 0.026 0.055 0.079

CA 0.350 0.051 0.500 0.083
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Experimental Study - Mixed

Gen AD
k-proto. Clust++ k-means KAMILA CPF

ARI 0.021 0.063 0.409 0.335 0.267
PS 0.576 0.167 0.807 0.790 0.606

Credit F1 0.233 0.003 0.255 0.169 0.205
NMI 0.013 0.156 0.355 0.329 0.049
CA 0.224 0.018 0.266 0.210 0.032
ARI 0.085 0.005 0.010 0.000 0.151
PS 0.991 0.590 0.993 0.990 1.000

KDD’99 F1 0.001 0.068 0.224 0.000 0.151
RIvs.B NMI 0.069 0.008 0.316 0.000 0.010

CA 0.000 0.187 0.163 0.394 0.028
ARI 0.000 -0.003 -0.003 0.000 0.118
PS 0.997 0.776 0.997 0.997 0.997

KDD’99 F1 0.000 0.028 0.680 0.000 0.189
GPvs.S NMI 0.000 0.001 0.001 0.000 0.003

CA 0.000 0.113 0.585 0.003 0.102
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Experimental Study - Large

k-proto. KAMILA CPF
ARI 0.031 0.050 0.153
PS 0.515 0.494 0.670

CovType F1 0.140 0.002 0.341
NMI 0.078 0.132 0.202
CA 0.249 0.063 0.341
ARI - 0.000 0.089
PS - 0.181 0.652

KDD’99 F1 - 0.000 0.121
DOSvs.NORM NMI - 0.000 0.020

CA - 0.000 0.121

k-proto. KAMILA CPF
Cov Type 52603.612 283.262 17782.344

KDD ’99 DOS vs. NORM - 416.293 137283.899
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Figure: Number of instances in a component (|C|) vs. Proportion of
instances requiring a broad search (p).

• Experimental analysis supports complexity analysis, p is
regularly less than 1% for large components
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(b) #Clust of CPF vs. k and K .

• k - Quality of clustering is high when k is in the range
[5, 10]

• K - Observations indicate setting K ≈
√
n is effective



TCD
Statisitics

Seminar Series

Introduction

CPF

Experimental
Study

References

Summary

• Introduce a new clustering algorithm, CPF, for large mixed
attribute data

• Adapts & extends the peak-finding method using
connected components

• Components give improved results while reducing
complexity to O(n log n)

• Experimental results indicate superior results compared to
benchmark k-means type methods

• Driven by flexibility of methods, distance metrics &
parameters allow detection of arbitrary clusters

• Code for the CPF method is available for download from
https://pypi.org/project/CPFcluster/

https://pypi.org/project/CPFcluster/
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