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Motivation
Targeting and Interrogating Networks by Novel Neuro-electric Biomarkers
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Motivation
Targeting and Interrogating Networks by Novel Neuro-electric Biomarkers
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Motivation
Targeting and Interrogating Networks by Novel Neuro-electric Biomarkers

Sensor Space Source Space

Localisation

Inverse
Model
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Resting-State EEG Networks
Resting State: Continuous EEG Recordings

Time vs. Frequency Domain Decomposed Signal
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Motivation: Resting-State EEG Networks

Spectral Power and Connectivity (Co-Modulation and/or Synchrony)

(McMackinetal., 2019, JNNP)
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Motivation: Motor Networks
Motor Tasks: EEG-EMG Coherence
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Motivation: Motor Networks
Increase Abnormal EEG-EMG Coherence in MND/ALS
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Motivation Examples of EEG vs Artefacts
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Overview
Non-Parametric Rank Statistics for Spectral Power and Coherence

Robustness of Non-Parametric Tests
for Simulated Spectral Power

Probability Distributions

=t Normal Signal, Parametric Test

=———e—= Normal Signal, Non-Parametric Test

= == = Signal + Noise (Non-Normal), Parametric Test

= == == Signal + Noise (Non-Normal), Non-Parametric Test

10+ 1-Sample Test for Significant Oscillation

-log(p)
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Signal Ratio, r

Nasseroleslami et al., BioRxiv
Non-Parametric-based Estimates of Power and Coherence
are Robust against Artefacts Dukic et al., 2017, IEEE EMBC 2017
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Introduction

 Parametric Estimation of Spectral Power and Coherence in
(Neural) Time Series Analysis is documented (Brillinger, 2001,
Halliday and Rosenberg, 1999)

* Thestatistical inference of spectral power and coherence of
neural signals remains a practical challenge.

*  Non-normal Distribution
*  Artefactual Components
 Bias

Complex statistical distributions.
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Introduction

 To parallel, Sign rank, Mann-Whitney tests, we need non-
parametric methods.

* Non-parametric methods (e.g. based on median) of spectra afford
robust estimation (Dukic et al. 2017).

Estimation of Coherence using the Median is Robust against EEG
Artefacts

Stefan Dukic, Parameswaran Mahadeva Iyer, Kieran Mohr, Orla Hardiman, Edmund C. Lalor,
Bahman Nasseroleslami

 However, the statistical inference based on these non-parametric
estimates remain to be formulated and tested.
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Aim and Objective:

 Aim: To provide non-parametric rank tests for 1- and 2-sample
statistical testing of spectral power and coherence

* Todemonstrate and verify the non-parametric tests using
simulated and real neural signals in different conditions, and to
assess their robustness in presence of artefactual components.
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2. Original Formulation for Spectra and Coherence
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Spectral Power and Coherence
Spectral Power

e Consider x(t) and y(t) to be time domain signals

Probability Distributions
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. Statistics:
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Spectral Power and Coherence
Coherence

«  Coherency function C and coherence [C.y,(f)[?

C Ey(p)
x/P}m(f)E;y(f)

C&y(f)

. Statistics:

*  Coherence has a hypergeometric (sampling) distribution. Under null
hypothesis (0 coherence), tanh='(.) provides an approximate
transformation to normal.

p=(1—|Cy (NI EY

Brillinger 2004; Halliday et al 1995; Priestly 1982
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3. Non-Parametric Estimation of Spectra and Coherence
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Non-Parametric Spectral Power and Coherence
Spectral Power

e Consider x(t) and y(t) to be time domain signals

Fo.(f) = E{Xi(NHXi(f)} Probability Distributions
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Non-Parametric Spectral Power and Coherence
Coherence

Probability Distributions
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Statistical Distribution of the Raw Cross-Spectra in 2D and Marginal Plots and the
Estimation of Cross-Spectrum using the Mean and Median ( ~ Fxy).
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Non-Parametric Spectral Power and Coherence
Coherence

e Consider x(t) and y(t) to be time domain signals

F:c:r(f) - S{Xz(f)Xz(f)*}
Foy(f) = E{Xu(HYi(f)"}

Spatial Median:
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Non-Parametric Spectral Power and Coherence
Coherence

Probability Distributions
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Statistical Distribution of the Raw Cross-Spectra in 2D and Marginal Plots and the
Estimation of Cross-Spectrum using the Mean and Median.

Trinity College Dublin, The University of Dublin




Outline

4. No-Parametric Rank Statistics for Spectral Power
1.
2.
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Non-Parametric Rank Statistics for Spectral Power

Main change in the way we handle time series statistics:

Exploiting Individual and All Data Points Regardless of Their
Measures and Their (Sampling) Distributions
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Non-Parametric Rank Statistics for Spectral Power

Confidence Intervals from Raw Spectra:

CDFyx, )Py (@/2)-iCDFyx 2y (1= (/2))]
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Non-Parametric Rank Statistics for Spectral Power

1 Sample

Typical Hypothesis: Presence of significant
(decrease/increase) in specific frequencies
(compared to white noise)

One-Sample Significant Power: Wilcoxon’s
Signed Rank test on the centred rank values

2 Sample

Two-Sample Significant Power Difference:

Traditional Mann-Whitney U test.

Trinity College Dublin, The University of Dublin
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5. No-Parametric Rank Statistics for Coherence
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Non-Parametric Rank Statistics for Coherence

1 Sample
Significance Testing for Coherence
1-Sample Location Problem 2.5 1] 25
ol | ﬁ-};'(;ne.(f‘iian) o
2
Test Selection Criterion:
1.5
Affine Invariant
1 =
0.51 1
0.5}
1 - =
1 0 1 2

Re(F, )

One-Sample Significant Coherence: One-Sample Spatial (signed) Ranks Test
(Hannu, Oja & Randles, 2004; Hannu, Oja, 2010; Nordhausen & Oja, 2011).
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Non-Parametric Rank Statistics for Coherence

2 Sample
Difference between 2 Coherences
2-Sample Location Problem YN o
2r ® E’rlyl/ Fw]mlelyl
{X 2;Y2, }/ 1:—;::2:::2 F:UQ.';?
1.5¢ ® Frop/\/ FrosaFyope ‘

Test Selection Criterion:

Affine Invariant

* Reflects Phase or Magnitude Difference

-1 —OI.5 | 0 05 1 ' '1:5 - 2 = 25

Re(ny)
Two-Sample Significant Coherence Difference (Magnitude and Phase): Two-
Sample Spatial Ranks Test (Hannu Oja & Randles, 2004; Hannu Oja, 2010;
Nordhausen & Oja, 2011).
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Non-Parametric Rank Statistics for Coherence
2 Sample: Separate Testing for Phase or Magnitude

Two-Sample Significant Difference in Coherence
Magnitude: Statistical trick by subtraction of z-scores,
similar to Stouffer’s method.

21 = 1CDFn01)(p1)

2 = ’l'-CDFN(o.l)(PQ)
Poirr = CDFpo,1)( 42\;{1 )
Piirpr = 1= Pusrr

Pairy = 2min(Paissr. Pairr.r)

Difference between 2 Coherences

25

CAXLY LY Faa B [
2l ®  Fun/\/FaaFun

«  Two-Sample Significant Difference in Coherence Phase: 7
Mann-Whitney U Test between the global-mean- S
subtracted phase values. (or other circular statistical tests)

-1 -0.5 0 0.5 1 15 2 25
Re(F, )
xy
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6. Numerical Examples
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Numerical Examples
Simulations

Robustness of Non-Parametric Tests for

Simulated Significant Coherence
=——e—= Normal Signal, Parametric Test
—— Normal Signal, Non-Parametric Test
= == = Signal + Noise (Non-Normal), Parametric Test

= == = Signal + Noise (Non-Normal), Non-Parametric Test
107

-log(p)

0 0.1 0.2 0.3 0.4 05
Correlation r

The 1-Sample Spatial Signed Rank, is Robust Against Artefacts.
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Numerical Examples
Simulations

Robustness of Non-Parametric Tests for
Simulated Difference in Coherence Magnitude

=———ea— Normal Signal, 2D Parametric Teston C

= == = Signal+ Noise (Non-Normal), 2D Parametric Teston C
s Normal Signal, 2D Non-Parametric Test on C

= == == Signal+Noise (Non-Normal), 2D Non-Paramet. Test on C
=———e— Normal Signal, 1D Parametric Test on |C|

= == = Signal+ Noise (Non-Normal), 1D Parametric Test on |C|
= Normal Signal, 1D Non-Parametric Test on |C|

= == = Sjgnal+ Noise (Non-Normal), 1D Non-Param. Test on |C|

-log(p)

0
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Correlationr vs. 0.5

The 2-Sample Statistical Tests based on SpatialRank and Spatial SignedRank
are Robust Against Artefacts
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Numerical Examples
Real Data

Significance of
Experimental Cortico-Muscular Coherence

Param. Test
Non-Param. Test

20 30
Frequency (Hz)

Both Test Families Detect Significant Presence of Coherence Between EEG and EMG signals.
Figure: Difference Between Cortico-Muscular Coherence in Left/Right Hemispheres.
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7. Discussion
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Discussion

« Benefits: Robustness, Distribution-free, Allowing Testing for
Magnitude/Phase, No need for Bootstrapping.

* Challenges: Closed form solutions, lower statistical power and
sensitivity

*  Opportunities: Usable for Time-Frequency, and Partial spectral
and Coherence, and other time series, can be tested at individual
subject or group-level.
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8. Conclusions and Recommendations
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Recommendations
Summary of Tests

*  One-Sample Significant Power: Wilcoxon’s Signed Rank test on the
centred rank values [1].

Two-Sample Significant Power Difference: Traditional Mann-Whitney U
test.

*  One-Sample Significant Coherence: One-Sample Spatial (signed) Ranks
Test (Hannu, Oja & Randles, 2004; Hannu, Oja, 2010; Nordhausen & Oja,
2011).

Two-Sample Significant Coherence Difference (Magnitude and Phase):
Two-Sample Spatial Ranks Test (Hannu Oja & Randles, 2004; Hannu Oja,
2010; Nordhausen & Oja, 2011).

«  Two-Sample Significant Difference in Coherence Magnitude: Statistical
trick by subtraction of z-scores, similar to Stouffer’s method [1].

«  Two-Sample Significant Difference in Coherence Phase: Mann-Whitney
U Test between the global-mean-subtracted phase values.
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Conclusions

*  The approach provides a new framework for non-parametric
statistical analysis of the neural signal spectra.

These methods are suited to neuroscience & neural engineering
applications, given the attractive properties such as minimal
assumption on distributions, statistical robustness, and the diverse
testing scenarios afforded.
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