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Research question

2

Which epidemiological and/or demographical variables are 
predictive for cervical cancer screening?



Cervical cancer worldwide

3
Incidence of Cervical Cancer, cases per 100K population



Cervical cancer risk factors

4



Case study
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• Publicly available dataset*

– 858 patients of Hospital Universitario de 
Caracas, Venezuela

• 36 features
– demographics, lifestyle, medical history etc.

• Biopsy as a binary classification label

*https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29

https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29


Missing values map
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Class imbalance and data subsampling
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Majority class subsampling
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Statistical tests, Mann-Whitney U-test
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Statistical tests, Chi-squared test
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Motivation for Explainable ML
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Published in 1845

Published in 2016



Linear models
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Non-linear models
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Local explanations
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Complex models are 
inherently complex!

But a single prediction involves only a 
small piece of that complexity
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Surrogate linear model
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Framework
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SHAP Explainer
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SHapley Additive exPlanations

• A method from coalitional game theory
– Players cooperate in a coalition and receive 

a certain profit from this cooperation

• Features of the model
– “Players”

• Outcome of the model
– “Profit”

Lloyd Shapley (1923 – 2016),
2012 Nobel Prize in Economics



Shapley value in a nutshell

How much did the feature contribute to the models prediction in 
all possible combinations?
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XGBoost performance
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Feature importance inconsistency

Cover Gain Weight



SHAP output
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Sexual debut age
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Biological age
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Sexually active age
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Hormonal contraception duration
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Parity*

26*Parity = the number of times that a woman has given birth to a foetus with a gestational age of 24 weeks or more, regardless of whether the child was born alive or was stillborn
Gravidity = number of times that a woman has been pregnant



Examples of positive class predictions
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True Positive, P=0.67

False Positive, P=0.63



Examples of negative class predictions
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True Negative, P=0.25

False Negative, P=0.22



Conclusions

• Good predictive performance
– Training ROC AUC = 0.85, Test ROC AUC = 0.78

• Explainable Machine Learning identified important features
– Sexually active age
– Hormonal contraception usage
– Number of pregnancies
– History of STDs

• Non-linear dependency between features and predicted cervical cancer risk
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Discussion
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