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Bayesian Linear Regression

Consider a 1D linear regression model:

y = a + b x + noise

and assume noise is Gaussian with zero mean and known variance σ2.

Given iid data = {(xi , yi ) : i = 1, . . . , n}, and
the probabilistic model:

Likelihood: p(data|a, b) =∏n
i=1 N(yi ; a + b xi , σ

2)

Prior: p(a, b) = N(a; 0, σ2
a)N(b; 0, σ2

b)

the posterior
p(a, b|data)

can be obtained in closed-form by Bayes’ rule
and is a bivariate Gaussian.
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Predictive posterior

Given the Gaussian posterior,

p(a, b|data)

we can sample a, b and predict.
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We can focus on the predictive posterior
at x∗:

p(a + b x∗|data)

which is also Gaussian.
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Equivalent form

We considered this prior

Prior: p(a, b) = N(a; 0, σ2
a)N(b; 0, σ2

b)

If we define
f (x) := a + bx .

Since f depends linearly on a, b, which are normal distributed, it follows that f is
also normal distributed with

mean: E (f (x)) = E (a) + E (b)x = 0

covariance: E (f (xi )f (xj)) = E ((a + bx1)(a + bx2)) = σ2
a + σ2

bx1x2 ∀x1, x2
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Equivalent form

Denote the covariance as:

Ω(xi , xj) := E (f (xi )f (xj))

and let X be the vector [x1, . . . , xn]T , we define the covariance matrix:

Ω(X ,X ) :=


Ω(x1, x1) Ω(x1, x2) . . . Ω(x1, xn)
Ω(x2, x1) Ω(x2, x2) . . . Ω(x2, xn)

...
...

...
Ω(xn, x1) Ω(xn, x2) . . . Ω(xn, xn)


and the vectors

Y :=

y1

...
yn

 , f (X ) :=

f (x1)
...

f (xn)


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Bayesian Linear Regression

We can equivalently write/derive Bayesian linear regression in this way:

Prior:

p(f (X )) = N

[ f (x1)

...
f (xn)

]
;

[
0
...
0

]
,

 Ω(x1,x1) Ω(x1,x2) ... Ω(x1,xn)
Ω(x2,x1) Ω(x2,x2) ... Ω(x2,xn)

...
...

...
Ω(xn,x1) Ω(xn,x2) ... Ω(xn,xn)




Likelihood:

p(Y |f (X )) =
n∏

i=1

N(yi ; f (xi ), σ
2) = N(Y ; f (X ), Inσ

2)

Posterior:
p(f (X )|data) (multivariate) Gaussian

The marginal on f (xi ), for any xi ∈ X , is equal to

p(f (xi )|data)

(
= p(a + bxi |data)

)
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Posterior predictive

Issue: from the previous model, we cannot compute

p(f (x∗)|data)

for x∗ /∈ X , we only have the posterior on f (X ). However, if we start with
X ′ = [XT , x∗]T and the model:

Prior:
p(f (X ′)) = N(f (X ′); 0,Ω(X ′,X ′))

Likelihood:
p(Y |f (X )) = N(Y ; f (X ), Inσ

2)

Posterior:
p(f (X ′)|data) (multivariate) Gaussian

We can then marginalise p(f (X ′)|data) to obtain

p(f (x∗)|data)
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Posterior predictive

The predictive distribution is also Gaussian:

p(f (x∗)|data) = N(f (x∗);µp(x∗),Ωp(x∗, x∗))

with

µp(x∗) = Ω(x∗,X )(Ω(X ,X ) + σ2In)−1Y

Ωp(x∗, x∗) = Ω(x∗, x∗)− Ω(x∗,X )(Ω(X ,X ) + σ2In)−1Ω(X , x∗)

Note that, the mean and variance are functions of x∗.
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Definition of GP

We have placed a prior on a function by specifying, for any finite set X ′, the
marginals:

f (X ′) ∼ N(0,Ω(X ′,X ′)).

By definition, this is a Gaussian Process:

A Gaussian process is a stochastic process (a collection of random vari-
ables indexed by x ∈ X ′), such that every finite collection of those
random variables has a (consistent) multivariate normal distribution.

It is denoted as:
f ∼ GP(0,Ω(x , x ′)),

and it is completely defined by a mean function (zero in the example) and a
covariance function.

This definition is consistent because the Gaussian distribution is closed to
marginalisation and because

Ω(X ′,X ′) > 0 ∀ X ′
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Why is this useful?

We can use GPs to perform closed-form Bayesian nonlinear regression by simply
changing the kernel function

Ω(x , x ′) = σ2
r e
− ||x−x′||

2`2 , Ω(x , x ′) = σ2
r

2

π
asin

(
σ2
w x
>x′+σ2

b√
σ2
w x
>x+σ2

b+1
√
σ2
w (x′)>x′+σ2

b+1

)
which are called “square exponential” and NN kernel.
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It also works for multivariate nonlinear regression, because f (x) ∈ R, no matter
what x is.

Everything is computed in closed-form!
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Hyperparameters

Kernels (covariance functions) have hyperparameters θ:

Ω(x , x ′) = σ2
r e
− ||x−x′||

2`2 , Ω(x , x ′) = σr
2 2

π
asin

(
σw

2x>x′+σb
2√

σw
2x>x+σb

2+1
√
σw

2(x′)>x′+σb
2+1

)
and we also need to select the variance σ2 of the Gaussian noise in the likelihood.

f ∼ GP(0,Ω(x , x ′))

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (years)

−2

−1

0

1

2

3
RBF (ls=0.25, var=2)

0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (years)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

RBF (ls=2,var=1)

0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian ProcessesWednesday 10th February, 2021 12 / 60



Hyperparameters

The marginal likelihood has a closed-form:

p(data|θ) = N(Y ; 0,Ω(X ,X ) + σ2In)

which means we can “easily” learn θ via Bayesian model selection or MCMC.
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Memory and Computational issues

Predictive posterior

p(f (x∗)|data) = N(f (x∗);µp(x∗),Ωp(x∗, x∗))

with

µp(x∗) = Ω(x∗,X )(Ω(X ,X ) + σ2In)−1Y

Ωp(x∗, x∗) = Ω(x∗, x∗)− Ω(x∗,X )(Ω(X ,X ) + σ2In)−1Ω(X , x∗)

The issue of GPs is that we need to build the covariance matrix

Ω(X ,X )

which has dimension n2 (memory) and invert it, which costs O(n3) (time). This

means that we cannot solve linear regression problems with 20000 data points,

but there are approximations.1

1
Schürch, M., Azzimonti, D., Benavoli, A., Zaffalon, M. “Recursive estimation for sparse Gaussian process regression.”

Automatica, 2020.
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Summarizing: GP Regression
D = {(xi , yi )}ni=1
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The success of Gaussian Processes for regression comes from the closed form

solution of the posterior (O(n3) time, O(n2) memory complexity).
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Gaussian Process Classification

D = {(xi , yi )}ni=1
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The posterior is not a Gaussian Processes!
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Main two approximations

For binary classification, the likelihood is not conjugate to the prior and,
therefore, the posterior is not a GP.
The posterior process can be approximated by a GP:

Laplace’s approximation;

Expectation propagation (EP).
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A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian ProcessesWednesday 10th February, 2021 17 / 60



New result
D = {(xi , yi )}ni=1
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The posterior is a SkewGP2

2
Benavoli, A., Azzimonti, D., and Piga, D. (2020b). “Skew Gaussian Processes for Classification.” Machine Learning,

109:1877–1902.
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Comparison

Laplace vs. EP vs. Exact (SkewGP)
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Benavoli, A., Azzimonti, D., and Piga, D. (2020b). “Skew Gaussian Processes for Classification.” Machine Learning,

109:1877–1902.
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More general
D = {(xi , yi )}ni=1
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The posterior is a Skew Gaussian Process and predictions can be computed in

O(n3) time, O(n2) memory complexity.
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What is a Unified Skew-Normal distribution (SUN)?

A vector z ∈ Rp is said to have a SUN distribution with latent skewness
dimension s, z ∼ SUNp,s(ξ,Ω,∆, γ, Γ), if its PDF is:

p(z) = φp(z − ξ; Ω)
Φs

(
γ + ∆T Ω̄−1D−1

Ω (z − ξ); Γ−∆T Ω̄−1∆
)

Φs (γ; Γ)
(1)

where

φp(z − ξ; Ω) is the PDF of a multivariate Normal distribution with mean
ξ ∈ Rp and covariance Ω = DΩΩ̄DΩ ∈ Rp×p with Ω̄ being a correlation
matrix and DΩ a diagonal matrix containing the square root of the diagonal
elements in Ω.

Φs(m;M) denotes the CDF of Ns(0,M) evaluated at m ∈ Rs .
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The parameters γ ∈ Rs , Γ ∈ Rs×s ,∆p×s control the skewness.
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What is a SkewGP?

We say that a real function f : Rp → R is distributed as a skew-Gaussian process
with latent dimension s,

f ∼ SkewGPs(ξ,Ω,∆, γ, Γ)

if, for any sequence of n points x1, . . . , xn ∈ Rp, the vector
f (X ) = [f (x1), . . . , f (xn)]T is SUN distributed with parameters γ, Γ, location,
scale and skewness matrices, respectively, given by

ξ(X ) :=


ξ(x1)
ξ(x2)

...
ξ(xn)

 , Ω(X ,X ) :=


Ω(x1, x1) Ω(x1, x2) . . . Ω(x1, xn)
Ω(x2, x1) Ω(x2, x2) . . . Ω(x2, xn)

...
... . . .

...
Ω(xn, x1) Ω(xn, x2) . . . Ω(xn, xn)

 ,
∆(X ) :=

[
∆(x1) ∆(x2) . . . ∆(xn)

]
.
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What is a SkewGP?

The process is well-defined provided that the matrix

M =

[
Γ ∆(X )

∆(X ) Ω̄(X ,X )

]
is positive definite.

Note that a SkewGP
f ∼ SkewGPs(ξ,Ω,∆, γ, Γ)

reduces to a GP when either the latent dimension is zero or when ∆(X ) = 0.
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Binary Classification

Consider the training data D = {(x i , yi )}ni=1, where x i ∈ Rp and yi ∈ {0, 1}.
We assume that

f ∼ SkewGP(ξ,Ω,∆,γ, Γ)

and consider a probit model for the likelihood:

p(D|f ) =
n∏

i=1

Φ((2yi − 1)f (x i ); 1) = Φn(Wf (X ); In),

where W = diag(2y1 − 1, . . . , 2yn − 1).
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Binary Classification with SkewGP prior

The (predictive) posterior of f (x∗) is SkewGP with mean, covariance and
skewness functions:

ξp(x∗) = ξ(x∗)

Ωp(x∗, x∗) = Ω(x∗, x∗),

∆p(x∗) =
[
∆(x∗) DΩ(x∗,x∗)

−1Ω(x∗,X )W T
]
,

and parameters

γp = [γ, W ξ(X )]T ,

Γp =

[
Γ ∆(X )TDΩ(X ,X )W

T

WDΩ(X ,X )∆(X ) (WΩ(X ,X )W T + In)

]

A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian ProcessesWednesday 10th February, 2021 25 / 60



Binary Classification with GP prior

The (predictive) posterior of f (x) for a GP classification problem (that is probit
likelihood and GP prior):

ξp(x) = ξ(x)

Ωp(x, x) = Ω(x, x),

∆p(x) =
[
��
�HHH∆(x) D−1

Ω(x,x)Ω(x,X )W T
]
,

γp = [�Zγ , W ξ(X )]T ,

Γp =

 �AΓ ((((
((((

(hhhhhhhhh∆(X )TDΩ(X ,X )W
T

(((
((((hhhhhhhWDΩ(X ,X )∆(X ) (WΩ(X ,X )W T + In)


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Hyperparameter learning and posterior sampling

The Marginal Likelihood (ML) is:

p(D|θ) =
Φs+n(γ̃; Γ̃)

Φs(γ; Γ)
.

To compute the ML we need to compute a multivariate CDF of dimension n. To
sample from the predictive posterior (this is necessary to compute
p(y = 1|x∗,D)) we must be able to compute sample from a truncated n
dimensional multivariate Gaussian distribution.

We can sample efficiently from the posterior using linear elliptical slice sampling

(O(n3) time, O(n2) memory complexity). Moreover, we have provided a lower

bound of p(D) that allows us to compute efficiently an approximation of the ML.
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Computational cost

Consider the independent random vectors r0 ∼ φp(0; Ω̄−∆Γ−1∆T ) and r1,−γ ,
the truncation below γ of r1 ∼ φs(0, Γ). Then the random variable

zu = ξ + DΩ(r0 + ∆Γ−1r1,−γ), (2)

Therefore, to compute the predictive SkewGP, we must find a way to sample from
a multivariate truncated normal r1,−γ .

1000 1500 2000 2500 3000 3500 4000 4500
training size

0

500

1000

1500

2000

2500

3000

3500

4000

se
co

nd
s

SkewGP-LinEss
GP-ess
GP-EP
GP-LP
GP-HMC

All these algorithms have complexity O(n3) but the constant is different.
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Nonparametric rest

Can we use the same approach for:

nonlinear regression;

logistic nonlinear regression (binary output);

multinomial logistic nonlinear regression (categorical output);

ordinal nonlinear regression;

preference learning?

GPs are not conjugate with those likelihoods, but SkewGPs are!

Benavoli, A., Azzimonti, D., & Piga, D. (2021). “A unified framework for
closed-form nonparametric regression, classification, preference and mixed
problems with Skew Gaussian Processes”. arXiv:2012.06846.
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Unification
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Bayesian Optimisation

What is BO?

It is a methodology for global black-box optimisation of functions that are
expensive to evaluate.

Imagine we want to find the maximum of this 1D function:
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but we do not know the function: we can only evaluate it.
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BO loop

We start from some initial data points data = {(xi , f (xi )) for i = 1, 2, 3}.
Loop:

1 compute a GP regression model (surrogated model);

2 optimise an acquisition function to compute xnext

3 evaluate f at xnext and update data = data ∪ {(xnext , f (xnext))}
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Projects: smart Manufacturing

Laser Cutting;

Electrical Discharge Machine;

3D printing.

Goal: find the setting for the machine that optimises quality/speed/reliability
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BO for coffee machine

Manufacturing process:

Setting:

x = [temp, press, coffee amount, coffee type]

we aim to make the best coffee.

DOE
How do we measure the quality of a cup
of coffee?
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Bayesian preferential BO

Before we consider the case that

evxnext (f )→ f (xnext)

but there are situations where evaluating the function is difficult (costly):

prefxnext ,xref (f ) =

{
xnext � xref if f (xnext) > f (xref )
xnext � xref if f (xnext) ≯ f (xref )

Likelihood:

p(data|f ) = Φ

(
f (xnext)− f (xref )

σ

)y

Φ

(
f (xref )− f (xnext)

σ

)1−y
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BO preferential loop

We start from some initial data points data = {x1 � x2, x1 � x3, x1 � x4}.
Loop:

1 compute a SkewGP model (surrogated model);

2 optimise an acquisition function to compute xnext

3 query f for xnext versus xref and update data = data ∪ {xnext � xref }
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Conclusions

(Skew) Gaussian Processes and Bayesian Nonparametrics;

Bayesian Hypothesis testing for comparing algorithms;

Probabilistic Machine Learning;

Probabilistic Programming (Stan, PyMC3);

Foundation of rationality theories:

No Dutch book
No Arbitrage
Equilibrium Game theory

Foundation of quantum theory.
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Fashion MNIST dataset (Sneaker vs. rest)

Fashion MNIST dataset (each image is 28× 28 = 784 pixels and there are 10
classes).

We randomly pooled 10000 images from the dataset and divided them into two
sets, with 5000 cases for training and 5000 for testing.

For each one of the 10 classes, we have defined a binary classification
sub-problem by considering one class against all the other classes.
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Fashion MNIST dataset (Sneaker vs. rest)
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