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Sampling and integration of a linearly constrained Gaussian

PROBLEM

L

N (0,1)

P (x ∈ L) = ?

x ∼ N (0,1) 1L ?

→

SOLUTION

Elliptical slice sampling

+

Multilevel splitting

=
{
Rejection-free sampling

Estimation of the normalization constant
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Problem setting

Consider M linear functions Aᵀx + b; A ∈ RD×M ,b ∈ RM and define the
domain

L = {x : aᵀ
mx + bm > 0; ∀m = 1, . . . ,M} ⊂ RD

L

N (0,1)

GOAL

Integrate: Z = P (x ∈ L) =
∫
RD

1L dN (x; 0,1) 1L =

{
1 if x ∈ L
0 if x /∈ L

Sample: x ∼ 1

Z
N (x; 0,1) 1L

Challenges:
d Z might be tiny

d High dimensions D

Assumptions:
d Standard normal w.l.o.g.

d Typically M ≥ D
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Part I: Sampling
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Basics: Slice sampling
[Neal, 1997; Neal, 2003]

MCMC algorithm with similarities to Gibbs sampling and rejection sampling.

Image adapted from MacKay: ITILA, 2006
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Basics: Elliptical slice sampling
Concept [Murray et al. 2010]

MCMC algorithm for the special case that p∗(x) = `(x)N (x, 0,Σ)

Construct 1D ellipse from state xt and auxiliary vector ν ∼ N (x, 0,Σ) as

x(θ) = xt cos θ + ν sin θ

and perform slice sampling on ellipse.

xt

ν

xt

ν

xt+1

Note: this algorithm is parameter-free!
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Sampling from a linearly constrained Gaussian domain
An adaptation of elliptical slice sampling

Elliptical slice sampling where...
1. “Likelihood” `(x) = 1L has binary outcome, 0 or 1

→ no likelihood threshold

2. Intersections of ellipse and domain boundaries
have closed-form solutions

Aᵀ(x0 cos θ + ν sin θ) + b = 0

θm,1/2 = ± arccos

(
−bm
r

)
+arctan

(
aᵀ
mν

r + aᵀ
mx0

)
with r =

√
(aᵀ

mx0)2 + (aᵀ
mν)2

→ rejection-free sampling

x0

ν

LIN-ESS
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Sampling: Applications
Drawing samples from a linearly constrained multivariate normal distribution

Bayesian optimization:

Predictive entropy search
requires p(f |X,xmin)

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

x

f
(x
)

f(x) µ(x) E[f |xmin]

Gaussian processes
A Gaussian process f ∼ GP(µ, k)is a random process with mean function µ : R→ R and
covariance function k : R× R→ R such that f evaluated at a finite set of inputs X follows a
multivariate normal distribution.
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Part II: Integration
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Motivation: Reliability analysis

A problem in reliability analysis

p(x)

L

P (x ∈ L) = ?

probability of failure

Problem
d Failure probability is extremely small
→ rejection sampling

d Experiments (= evaluations) can be expensive

Idea
Decompose integral into easier-to-solve integrals

Multilevel splitting methods: Holmes-Diaconis-Ross, subset simulation
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Integration via the Holmes-Diaconis-Ross algorithm
[Diaconis and Holmes 1995, Ross 2012]

Key idea: Decompose integral into product of conditional probabilities:

Z = P (L) = P (L0)

T∏
t=1

P (Lt|Lt−1).

of nested domains RD = L0 ⊃ L1 ⊃ L2 ⊃ ... ⊃ LT = L, s.t. Lt =
⋂t

i=1 Li.

−2 0 2

−2

0

2

−2 0 2 −2 0 2 −2 0 2

Define nested domain by a set of scalar shift values ∞ = γ0, . . . , γT = 0 with

Lt = {x : aᵀ
mx + bm + γt > 0 ∀m = 1, . . . ,M}
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The Holmes-Diaconis-Ross algorithm
[Diaconis and Holmes 1995, Ross 2012]

1 procedure HDR(A,b, {γ1, . . . , γT }, N)
2 X ∼ N (0,1) � N samples

3 logZ = 0 � initialize log integral value

4 for t = 1 . . . T do
5 Lt = {x : minm(aᵀ

mxn + bm) + γt > 0}Nn=1 � find samples inside current nesting

6 logZ ← logZ + log(#(X ∈ Lt))− logN
7 choose x0 ∈ Lt

8 X← LinESS(A,b + γt, N, x0) � draw new samples from constrained domain

9 end for
10 return logZ
11 end procedure

HDR allows to compute the logarithm of the integral, log Ẑ =
∑T

t=1 log ρt, where ρt =
P (Lt|Lt−1).
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Integration: Subset simulation
[Au and Beck 2001]

i) LIN-ESS to sample from Lt, t = 1 . . . T ? X
ii) How to choose the nested domains γ0, . . . , γT ?

Subset simulation: similar to HDR, but:

1. Fix conditional probabilities ρt = P (Lt|Lt−1) to ρ = 1/2

2. Sample from current nesting and choose γt s.t. bNρc samples fall in Lt.
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Integration: Pre-processing with subset simulation
...and some insight about the role of the nestings

Subset simulation:
d How many samples?

d Example: 500-d shifted orthant
Z = 3.07 · 10−38 = 2−124.6

d Subset simulation is biased
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If ρ = P (Lt | Lt−1) ∀t = 0 . . . T and T nestings, the subset estimator is roughly Ẑss ≈ ρT
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Integration: Taking over with HDR
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HDR performance depends on nesting sequences: a good nesting matters!
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Experiments: Entropy Search
Probability of xi to be the minimum [Hennig & Schuler 2012]

0 1
0

2

4

x

p
m
in
(x
)

100 101 102 103
10−3

10−2

10−1

100

hdr
ep

t(s)

re
l.

er
ro

r

6.8 · 10−4 6.6 · 10−5

8.9 · 10−3 3.7 · 10−6

Probability of minimum:

pmin(xi)

=

∫
df N (f,µ,Σ)

∏
j 6=i

1f(xi)<f(xj)
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Probabilistic tree search
work & slides by Julia Grosse

Scores under random play:

p(g0) = N (g0; 0, 1)

p(gi|gj) = N (gi;µj , 1)

Scores under optimal play:

vi =


gi if i is leaf
maxj∈children(i){vj} if i is MAX node
minj∈children(i){vj} if i is MIN node

Observations are linear constraints at leaf nodes:

p(win|gt) = I[gt > 0]

p(loss|gt) = I[gt < 0]
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Probabilistic tree search
Observations are linear constraints work & slides by Julia Grosse

Assume we observe a win at leaf t1 and a loss at leaf t2.
The posterior over the scores is a constraint Gaussian:
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Summary

Gaussians under linear domain constraints with Oindrila Kanjilal and Philipp Hennig

i rejection-free sampling scheme based on elliptical slice sampling

ii integration scheme that works for arbitrarily small probability masses

Paper arxiv:1910.09328

Code https://github.com/alpiges/LinConGauss

Thank you!
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