Gaussians under Linear Domain Constraints

Alexandra Gessner
Trinity College Dublin
March 10, 2021

MAX PLANCK INSTITUTE

FOR INTELLIGENT SYSTEMS
im rs is International Max Planck Research
p School on Intelligent Systems

some of the presented work is supported
by the European Research Council.

EBERHARD KARLS

UNIVERSITAT
TUBINGEN




Machine Learning in Tiibingen

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

CyberValley

MAX PLANCK INSTITUTE

FOR INTELLIGENT SYSTEMS




Sampling and integration of a linearly constrained Gaussian

Pxel)=7?
x~N(0,1) 1z ?

Elliptical slice sampling Multilevel splitting

_ {Rejection—free sampling

Estimation of the normalization constant



Problem setting

Consider M linear functions ATx + b; A € RP*M b ¢ RM and define the

domain
L={x:al x+b, >0, Vm=1,...,M}CRP

1if L

Integrate: Z:P(xeﬁ):/ 1z dN(x;0,1) fp={ "XE
RD 0if x ¢ L

1
Sample: X~ = N(x;0,1) 1.
Challenges: Assumptions:
+ Z might be tiny + Standard normal w.l.o.g.

+ High dimensions D + Typically M > D



Part |: Sampling



Basics: Slice sampling

[Neal, 1997; Neal, 2003]

MCMC algorithm with similarities to Gibbs sampling and rejection sampling.
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Image adapted from MacKay: ITILA, 2006




Basics: Elliptical slice sampling

Concept [Murray et al. 2010]

MCMC algorithm for the special case that p.(x) = £(x) N'(x,0,X)

Construct 1D ellipse from state x; and auxiliary vector v ~ N (x,0,X) as

x(0) = x;cos0 +vsinb

and perform slice sampling on ellipse.

Note: this algorithm is parameter-free!



Sampling from a linearly constrained Gaussian domain

An adaptation of elliptical slice sampling

Elliptical slice sampling where...
1. “Likelihood” £(x) = 1~ has binary outcome, 0 or 1

— no likelihood threshold

2. Intersections of ellipse and domain boundaries
have closed-form solutions

AT(xgcosf +vsinf)+b=0

b, al v
0 = farccos | —— |+arctan | — 22—
m,1/2 T < T>+ T n(r—i—alnxo)

with 7 = \/(alx0)? + (af,v)?

LIN-ESS

— rejection-free sampling



Sampling: Applications

Drawing samples from a linearly constrained multivariate normal distribution

20 T T T
— f(z) — p(z) E[f|Zmin] V.

Bayesian optimization: 10
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Gaussian processes

‘ a

A Gaussian process f ~ GP(u, k)is a random process with mean function p : R — R and
covariance function k£ : R x R — R such that f evaluated at a finite set of inputs X follows a
multivariate normal distribution.



Part IlI: Integration



Motivation: Reliability analysis

A problem in reliability analysis

Problem
+ Failure probability is extremely small
@ -
% + Experiments (= evaluations) can be expensive
p
P(xel)= 7 Idea

. ) Decompose integral into easier-to-solve integrals
probability of failure

Muiltilevel splitting methods: Holmes-Diaconis-Ross, subset simulation
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Integration via the Holmes-Diaconis-Ross algorithm

[Diaconis and Holmes 1995, Ross 2012]

Key idea: Decompose integral into product of conditional probabilities:

T
Z = P(L) = P(Lo) [ [ P(LilLe-r).
t=1
of nested domains RP = L4 D L1 DLy D ... DLy =L, st. Ly = ﬂzzl L;.
T | i T T / T ] I T /

Define nested domain by a set of scalar shift values co = ~g,...,yr = 0 with
Li={x:alx+by +7>0 Vm=1,...,M}
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The Holmes-Diaconis-Ross algorithm

[Diaconis and Holmes 1995, Ross 2012]

1 procedure HDR(A,b, {v1,...,v7}, N)

2 X ~ N(O, 1) // N samples
3 IOg Z =0 // initialize log integral value
s fort=1...T do

5 Ly = {X : min,, (aIan + bm) + v > 0}2]21 // find samples inside current nesting
o log Z < log Z + log(#(X € L;)) — log N

7 choose xg € L;

8 X LmESS(A, b+ Yt ]\77 Xo) // draw new samples from constrained domain
° end for

10 return log Z

11 end procedure

HDR allows to compute the logarithm of the integral, log Z = Z;‘ll log p:, where p; =
P(L|Lt—1).
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Integration: Subset simulation

[Au and Beck 2001]

i) LIN-ESS to sample from Ly, t=1...T ? v
i)  How to choose the nested domains 7o, ...,y ?

Subset simulation: similar to HDR, but:
1. Fix conditional probabilities p; = P(L¢|L—1) to p = 1/2

2. Sample from current nesting and choose ~; s.t. [Np| samples fall in L;.
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Integration: Pre-processing with subset simulation

...and some insight about the role of the nestings

log, Z 2e 4e e |8
2t ) 6@ 32e 64

Subset simulation: i 1288 2568 5120 | ( >
+ How many samples? & 3
1H% 148
+ Example: 500-d shifted orthant . -

Z =3.07-107%8 = 271246 12

+ Subset simulation is biased 0 0

0 100 200 300

# subsets; — log, Zes

If p=P(Ly|L:—1) YVt =0...T and T nestings, the subset estimator is roughly Zos ~ pT
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Integration: Taking over with HDR
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HDR performance depends on nesting sequences: a good nesting matters!
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Experiments: Entropy Search

Probability of x

; to be the minimum

[Hennig & Schuler 2012]
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Probabilistic tree search

work & slides by Julia Grosse

Scores under random play:

p(g0) = N(g0;0,1)
p(gilgs) = N(gi5 115, 1)

vo = maz{voo, vo1}

vor = min{voio, vor1}

Scores under optimal play:

gi if i is leaf
V; = MaX;echildren(4) {Uj} if ¢ is MAX node ;
minjech“dren(i){vj} if 7 is MIN node

Observations are linear constraints at leaf nodes:

p(winlgs) = I[g; > 0]
p(loss|g:) = I[g: < 0]
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Probabilistic tree search

Observations are linear constraints work & slides by Julia Grosse

Assume we observe a win at leaf ¢; and a loss at leaf ¢5.
The posterior over the scores is a constraint Gaussian:

4

g of leaf t2
o

g of leaf t1
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Summary

Gaussians under linear domain constraints with Oindrila Kanjilal and Philipp Hennig

@ rejection-free sampling scheme based on elliptical slice sampling

@ integration scheme that works for arbitrarily small probability masses

Paper arxiv:1910.09328
Code https://github.com/alpiges/LinConGauss


https://github.com/alpiges/LinConGauss

