Gaussians under Linear Domain Constraints

Alexandra Gessner

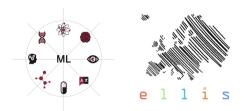
Trinity College Dublin March 10, 2021

imprs-is

International Max Planck Research School on Intelligent Systems

some of the presented work is supported by the European Research Council.

Machine Learning in Tübingen



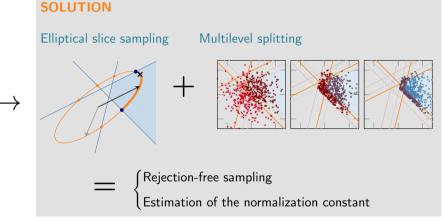
CyberValley

Sampling and integration of a linearly constrained Gaussian

PROBLEM

$$P(\mathbf{x} \in \mathcal{L}) = ?$$

$$\mathbf{x} \sim \mathcal{N}(0, \mathbf{1}) \ \mathbb{1}_{\mathcal{L}} ?$$

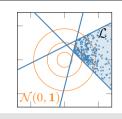


2

Problem setting

Consider M linear functions $\mathbf{A}^\mathsf{T}\mathbf{x} + \mathbf{b}$; $\mathbf{A} \in \mathbb{R}^{D \times M}, \mathbf{b} \in \mathbb{R}^M$ and define the domain

$$\mathcal{L} = \{ \mathbf{x} : \mathbf{a}_m^\mathsf{T} \mathbf{x} + b_m > 0; \quad \forall m = 1, \dots, M \} \subset \mathbb{R}^D$$



GOAL

$$Z = P(\mathbf{x} \in \mathcal{L}) = \int_{\mathbb{D}D} \mathbb{1}_{\mathcal{L}} \, \mathrm{d} \, \mathcal{N}(\mathbf{x}; 0, \mathbf{1})$$

$$\mathbb{1}_{\mathcal{L}} = \begin{cases} 1 \text{ if } \mathbf{x} \in \mathcal{L} \\ 0 \text{ if } \mathbf{x} \notin \mathcal{L} \end{cases}$$

$$\mathbf{x} \sim \frac{1}{Z} \, \mathcal{N}(\mathbf{x}; 0, \mathbf{1}) \, \mathbb{1}_{\mathcal{L}}$$

Challenges:

- ⋆ Z might be tiny
- ullet High dimensions D

Assumptions:

- + Standard normal w.l.o.g.
- + Typically $M \ge D$

3

MCMC algorithm with similarities to Gibbs sampling and rejection sampling.

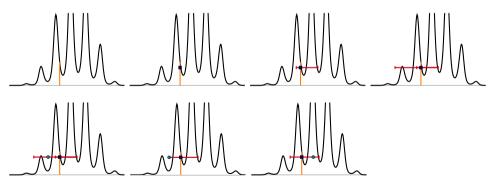


Image adapted from MacKay: ITILA, 2006

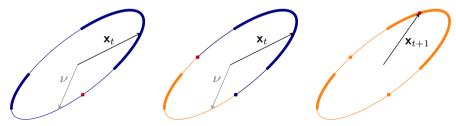
F

MCMC algorithm for the special case that $p_*(\mathbf{x}) = \ell(\mathbf{x}) \, \mathcal{N}(\mathbf{x}, \mathbf{0}, \mathbf{\Sigma})$

Construct 1D ellipse from state \mathbf{x}_t and auxiliary vector $\boldsymbol{\nu} \sim \mathcal{N}(\mathbf{x}, \mathbf{0}, \boldsymbol{\Sigma})$ as

$$\mathbf{x}(\theta) = \mathbf{x}_t \cos \theta + \boldsymbol{\nu} \sin \theta$$

and perform slice sampling on ellipse.



Note: this algorithm is parameter-free!

Sampling from a linearly constrained Gaussian domain

An adaptation of elliptical slice sampling

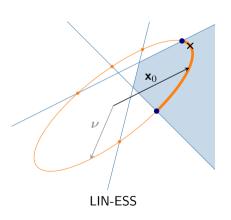
Elliptical slice sampling where...

- 1. "Likelihood" $\ell(\mathbf{x}) = \mathbb{1}_{\mathcal{L}}$ has binary outcome, 0 or 1
 - → no likelihood threshold
- 2. Intersections of ellipse and domain boundaries have closed-form solutions

$$\mathbf{A}^{\mathsf{T}}(\mathbf{x}_0\cos\theta + \boldsymbol{\nu}\sin\theta) + \mathbf{b} = \mathbf{0}$$

$$\theta_{m,1/2} = \pm \arccos\left(-\frac{b_m}{r}\right) + \arctan\left(\frac{\mathbf{a}_m^\mathsf{T} \boldsymbol{\nu}}{r + \mathbf{a}_m^\mathsf{T} \mathbf{x}_0}\right)$$
 with $r = \sqrt{(\mathbf{a}_m^\mathsf{T} \mathbf{x}_0)^2 + (\mathbf{a}_m^\mathsf{T} \boldsymbol{\nu})^2}$

→ rejection-free sampling

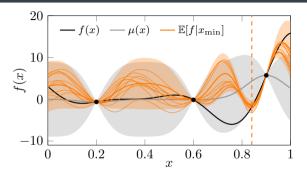


Sampling: Applications

Drawing samples from a linearly constrained multivariate normal distribution

Bayesian optimization:

Predictive entropy search requires $p(f \mid X, x_{\min})$



Gaussian processes

A Gaussian process $f \sim \mathcal{GP}(\mu, k)$ is a random process with mean function $\mu : \mathbb{R} \to \mathbb{R}$ and covariance function $k : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that f evaluated at a finite set of inputs \mathbf{X} follows a multivariate normal distribution.

8

Part II: Integration

Motivation: Reliability analysis

A problem in reliability analysis

$$P(\mathbf{x} \in \mathcal{L}) = ?$$

probability of failure

Problem

- + Failure probability is extremely small
 - $\rightarrow \, {\sf rejection} \, \, {\sf sampling}$
- + Experiments (= evaluations) can be expensive

Idea

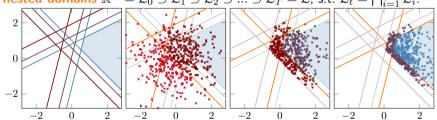
Decompose integral into easier-to-solve integrals

Multilevel splitting methods: Holmes-Diaconis-Ross, subset simulation

Key idea: Decompose integral into product of conditional probabilities:

$$Z = P(\mathcal{L}) = P(\mathcal{L}_0) \prod_{t=1}^{T} P(\mathcal{L}_t | \mathcal{L}_{t-1}).$$

of nested domains $\mathbb{R}^D = \mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset ... \supset \mathcal{L}_T = \mathcal{L}$, s.t. $\mathcal{L}_t = \bigcap_{i=1}^t \mathcal{L}_i$.



Define nested domain by a set of scalar shift values $\infty = \gamma_0, \dots, \gamma_T = 0$ with

$$\mathcal{L}_t = \{\mathbf{x} : \mathbf{a}_m^\mathsf{T} \mathbf{x} + b_m + \gamma_t > 0 \quad \forall m = 1, \dots, M\}$$

```
1 procedure HDR(\mathbf{A}, \mathbf{b}, \{\gamma_1, \dots, \gamma_T\}, N)
         \mathbf{X} \sim \mathcal{N}(0, \mathbf{1})
                                                                                                                                 /\!\!/ N samples
      \log Z = 0
                                                                                                               // initialize log integral value
       for t = 1 \dots T do
       \mathcal{L}_t = \{\mathbf{x} : \min_m (\mathbf{a}_m^\mathsf{T} \mathbf{x}_n + b_m) + \gamma_t > 0\}_{m=1}^N
                                                                                                     # find samples inside current nesting
 5
         \log Z \leftarrow \log Z + \log(\#(\mathbf{X} \in \mathcal{L}_t)) - \log N
          choose \mathbf{x}_0 \in \mathcal{L}_t
       X \leftarrow LinESS(A, b + \gamma_t, N, x_0)
                                                                                         # draw new samples from constrained domain
         end for
         return \log Z
11 end procedure
```

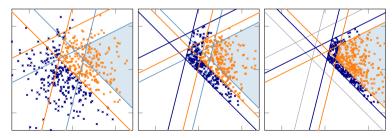
HDR allows to compute the logarithm of the integral, $\log \hat{Z} = \sum_{t=1}^{T} \log \rho_t$, where $\rho_t = P(\mathcal{L}_t | \mathcal{L}_{t-1})$.

i) LIN-ESS to sample from $\mathcal{L}_t, t = 1 \dots T$?

- \checkmark
- ii) How to choose the nested domains $\gamma_0, \ldots, \gamma_T$?

Subset simulation: similar to HDR, but:

- 1. Fix conditional probabilities $\rho_t = P(\mathcal{L}_t | \mathcal{L}_{t-1})$ to $\rho = 1/2$
- 2. Sample from current nesting and choose γ_t s.t. $\lfloor N\rho \rfloor$ samples fall in \mathcal{L}_t .

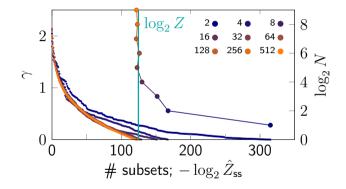


Integration: Pre-processing with subset simulation

...and some insight about the role of the nestings

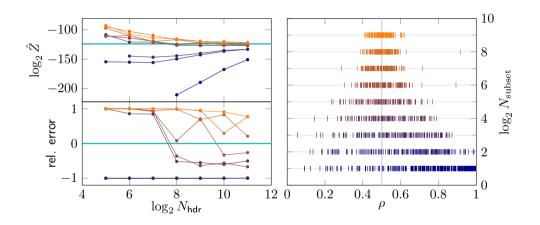
Subset simulation:

- + How many samples?
- + Example: 500-d shifted orthant $Z = 3.07 \cdot 10^{-38} = 2^{-124.6}$
- + Subset simulation is biased

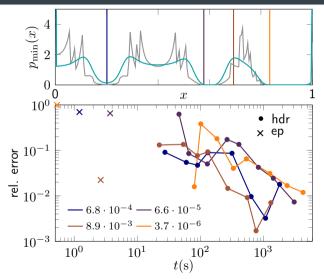


If $\rho = P(\mathcal{L}_t | \mathcal{L}_{t-1}) \ \forall t = 0 \dots T$ and T nestings, the subset estimator is roughly $\hat{Z}_{ss} \approx \rho^T$

Integration: Taking over with HDR



HDR performance depends on nesting sequences: a good nesting matters!



Probability of minimum:

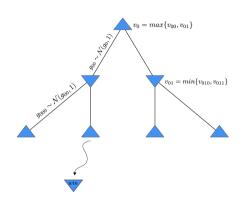
$$\begin{split} p_{\min}(\mathbf{x}_i) \\ &= \int d\mathbf{f} \; \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \prod_{j \neq i} \mathbb{1}_{f(\mathbf{x}_i) < f(\mathbf{x}_j)} \end{split}$$

Scores under random play:

$$p(g_0) = \mathcal{N}(g_0; 0, 1)$$
$$p(g_i|g_j) = \mathcal{N}(g_i; \mu_j, 1)$$

Scores under optimal play:

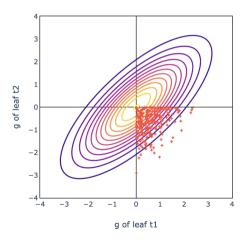
$$v_i = \begin{cases} g_i & \text{if } i \text{ is leaf} \\ \max_{j \in \mathsf{children}(i)} \{v_j\} & \text{if } i \text{ is MAX node} \\ \min_{j \in \mathsf{children}(i)} \{v_j\} & \text{if } i \text{ is MIN node} \end{cases}$$



Observations are linear constraints at leaf nodes:

$$\begin{aligned} p(\mathsf{win}|g_t) &= \mathbb{I}[g_t > 0] \\ p(\mathsf{loss}|g_t) &= \mathbb{I}[g_t < 0] \end{aligned}$$

Assume we observe a win at leaf t_1 and a loss at leaf t_2 . The posterior over the scores is a constraint Gaussian:



Summary

Gaussians under linear domain constraints with Oindrila Kanjilal and Philipp Hennig,

- i rejection-free sampling scheme based on elliptical slice sampling
- (ii) integration scheme that works for arbitrarily small probability masses

Paper arxiv:1910.09328

Code https://github.com/alpiges/LinConGauss

Thank you!