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Markov chains

A Markov chain {Xt : t ∈ N} on some state space (E, E) is characterized by:

I an initial distribution π0 on (E, E),

I a transition kernel P : (E, E)→ [0, 1], that is a conditional probability
distribution

P(x ,A) = Pr(Xt ∈ A |Xt−1 = x) , ∀ x ∈ E, A ∈ E .

Certain Markov chains have the property of having a limiting distribution, call
it π,

lim
t→∞

Pr(Xt ∈ A)→ π(A) , ∀A ∈ X ,

which does not depend on π0.

In this talk:

I we prescribe a probability distribution of reference π on (E, E), usually
called target distribution

I we want to sample from π using the Markov P

I we assume that π is the limiting distribution of P

I we assume π0 = π (start in stationary regime)
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Markov chain Monte Carlo (MCMC)
Consider a test function f : E→ R (measurable). The typical goal of a
MCMC procedure is to estimate quantities of the form

πf :=

∫
f (x)π(dx)

by mean of the empirical average along the path of a Markov chain
{Xt : t ∈ N}

π̂f T := (1/T )
T∑
t=1

f (Xt) , X0 ∼ π , Xt+1 ∼ P(Xt , · ) , t > 0 .

In Statistics and ML applications, we ask that {π̂f T} satisfies a CLT
√
T
(
π̂f T − πf

)
L−→ N (0, var(P, f )) , as T →∞

where the asymptotic variance of the Markov chain

var(P, f ) := lim
T→∞

1

T
Var

{
T∑
t=1

f (Xt)

}
must exist and be finite.

⇒ the lower var(P, f ) the more precise the estimation of πf .
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Three examples of Markov chain CLT’s
Since we need to have var(P, f ) <∞ and that

var(P, f ) = Varπf (X0) + 2
∞∑
t=1

Cov(f (X0), f (Xt))

we need to focus on f ∈ L2(π) = {f : E→ R : Varπf (X ) <∞}.

I (Cogburn, 1976) If P is uniformly ergodic, then for each f ∈ L2(π)

CLT holds .

I (Kipnis and Varadhan, 1986) If P is π-reversible and var(P, f ) <∞ for
all f ∈]Ltwo(π), then

CLT holds for all L2(π) .

I (Roberts and Rosenthal, 2004) If P is geometrically ergodic with drift
function V : E→ [1,∞), then

CLT holds for the subset {f ∈ L2(π) : sup f 2/V <∞} .

See On the Markov Chain Central Limit Theorem (2004) by G. Jones for a
comprehensive review.
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Example 1 and illustration of CLT

Consider that π is the mixture of two gaussians with pdf as follow

We are interested in estimating µ = Pr(X1 < 0) so we take f (x1, x2) = 1{x1<0}
since

Ef (X1,X2) =

∫∫
f (x1, x2)π(dx1, dx2) =

∫ 0

−∞
π(dx1) = µ ,

thus with a Markov chain {X1,t ,X2,t}Tt=1, 1
T

∑T
t=1 f (X1,t ,X2,t)→ µ .
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Example 1 and illustration of CLT
We chose the Gibbs sampler to define P and got the following distribution of

√
T

[
1

T

T∑
t=1

f (X1,t ,X2,t)− µ

]
.

Figure: T ∈ {50, 100, 300, 1000, 10000}

⇒ var(P, f ) = Var

[
1√
T

T∑
t=1

f (X1,t ,X2,t)

]
︸ ︷︷ ︸

asymptotic variance

matters for CI’s tightness .
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Comparison of MCMC algorithms

It can be achieved on different grounds, but in this talk we say for two MCMC
samplers P0 and P1 that

P1 is better than P0 to estimate πf

if var(P1, f ) ≤ var(P0, f ).

In the previous example, consider that P1 is the Gibbs sampler and P0 is a
“modified” Gibbs sampler.

f var(P1, f ) var(P0, f )
f (x) = 1x1<0 3.3 2.1

f (x) = ‖x/10‖2 1.44 1.22
f (x) = (x2/10)3 0.85 0.15
f (x) = cos(x) 5.1 5.5

In this example P0 seems often better than P1, but not always (see last
function).

⇒Is it possible to decide which algorithm to choose to estimate µ without
doing any preliminary simulation?
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Peskun ordering on reversible Markov chains
More rigorously, we say that P1 is more efficient than P0 in terms of
asymptotic statistical efficiency if

var(P1, f ) ≤ var(P0, f ) ,

holds for a rich enough class of test functions F ⊂ L2(π).

Peskun-Tierney partial ordering. We note P1 � P0 if

P1(x ,A\{x}) ≥ P0(x ,A\{x}) , for all (x ,A) ∈ E× E

Let (P0,P1) be π-reversible. Peskun (1973) and Tierney (1998) showed that

P1 � P0 =⇒ var(P1, f ) ≤ var(P0, f ) , for each f ∈ L2(π) .

⇒ When comparing two MCMC (π-rev.) samplers P0 and P1, proving that P1

is better than P0, one can ”try” to show that P1 � P0.

⇒ In the previous example, P0 does not dominate P1 according to Peskun
ordering, even though it looks better for most test functions we tried.
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Relaxed and strong versions of Peskun ordering

Let ω > 0 and assume

P1(x ,A\{x}) ≥ ωP0(x ,A\{x}) , for all (x ,A) ∈ E× E

then Andrieu, Lee and Vihola (2018) showed that

var(P1, f ) ≤ 1

ω
var(P0, f ) +

(
1

ω
− 1

)
Varπf (X ) ,

for each f ∈ L2(π).

I Peskun-Tierney corresponds to ω = 1

I Strong/quantitative version of Peskun-Tierney ω > 1, e.g. ω = 2 and we
have

var(P1, f ) ≤ 1

2
var(P0, f )− Varπf (X )/2 ≤ 1

2
var(P0, f )

I Relaxed version ω < 1, e.g ω = 1/2 and we have

var(P1, f ) ≤ 2var(P0, f ) + Varπf (X )
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Recent papers discussing Peskun-Tierney ordering

Methodology: constructing MCMC samplers that improve existing ones by
showing a Peskun-Tierney ordering

I Informed proposals for local MCMC in discrete spaces, Zanella (2020)

I A Metropolis-class sampler for targets with non-convex support, Moriarty
et al. (2020)

I Markov chain Monte Carlo algorithms with sequential proposals, Park and
Atchadé (2020)

I Nonreversible Jump Algorithms for Bayesian Nested Model Selection,
Gagnon and Doucet (2020)

Theoretical side:

I Peskun-Tierney ordering for Markov chain and process Monte Carlo:
beyond the reversible scenario, Andrieu and Livingstone (2020)
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Main result
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Definition and notation
(1) Function space
I Let the subset of centered functions be

L2,0(π) := {f ∈ L2(π) : Eπf (X ) = 0}
I Define the weighted inner product on L2(π) as

〈f , g〉 =

∫
E

π(dx)f (x)g(x) , (f , g) ∈ L2(π)2

I The (weighted) L2-norm of f ∈ L2,0(π) induced by this inner product
satisfies

‖f ‖2
2 =

∫
f (x)2π(dx) = Varπf (X ) .

(2) Markov chain kernel P as an operator on L2,0(π)
I the operator is defined by

P : f 7→
∫
E

P( · , dx)f (x) = E {f (X1) |X0 = ·}

I if f ∈ L2,0(π), the inner product between f and Pf is

〈f ,Pf 〉 = Cov(f (X0), f (X1)) .

I P is a positive operator on L2(π) is for each f ∈ L2(π),

〈f ,Pf 〉 ≥ 0 .
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Why is a Peskun-Tierney ordering hard to verify?
Like the ordering induced by positivity for symmetric matrices, Peskun-Tierney
ordering is a partial ordering:

there exist (P0,P1) : P0 6� P1 and P1 6� P0 .

It has strong necessary conditions:

I (as we saw)

var(f ,P1) ≤ var(f ,P0) , for all f ∈ L2,0(π)

I positivity of P0 − P1

〈f , (P0 − P1)f 〉 ≥ 0 , for all f ∈ L2,0(π)

I as is well known
gapR(P1) ≥ gapR(P0) ,

where gapR(Pi ) is the right spectral gap of Pi

gapR(Pi ) = inf
f∈L2,0(π)

〈f , (Id− Pi )f 〉
‖f ‖2

.
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Weak version of Peskun-Tierney result?

Recall that if P0 and P1 are two π-reversible Markov kernels

P1 � P0 =⇒ var(P1, f ) ≤ var(P0, f ) , for each f ∈ L2,0(π)

A natural question would be

I can we find a (partial) ordering weaker than P1 � P0, say P1%P0, easier to
verify while nevertheless satisfying something like

P1 % P0

+ perhaps
additional

assumptions

=⇒ var(P1, f ) ≤ var(P0, f ) , for each f ∈ F

for a smaller, yet sufficiently rich, class of functions F ⊂ L2,0(π).
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Attempt #1: marginal Peskun-Tierney ordering
Setup:
I Consider a product space (E× E, E ⊗ E)

π(dx) = π(dx1,dx2)

I Suppose interest lies intrinsically on the marginal π1(dx) := π(dx ,E)
I The test functions of interest are

F := {f ∈ L2,0(π) : ∀ (x1, x2) ∈ E× E, f (x1, x2) = f̄ (x1)}

I Denote P1 % P0 if

∀ (x1, x2,A) ∈ E× E× E , P1(x1, x2;A\{x1},E) ≥ P0(x1, x2;A\{x1},E)

Do we have

P1 % P0 =⇒ var(P1, f ) ≤ var(P0, f ) , for all f ∈ F ?

Proposition 1

In the previous setup, assume that for i ∈ {0, 1}

π(dx1 | x2)Pi (x1, x2;dx ′1,E) = π(dx ′1 | x2)Pi (x
′
1, x2; dx1,E) , for all x2 ∈ E

then

P1 % P0 ⇒ P0 − P1 is positive on F 6⇒ var(P1, f ) ≤ var(P0, f ) , for all f ∈ F
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Attempt #2: conditional Peskun-Tierney ordering
Setup:
I Let Ẽ ⊂ E with π(Ẽ) > 0 and let Ẽ be a σ-algebra on Ẽ
I Interest lies specifically on the conditional distribution

πẼ(dx) ∝ π(dx)1{x∈Ẽ}

I Test functions are

F := {f ∈ L2(π) : ∀ x ∈ E, f (x) = f (x)1{x∈Ẽ}}

I Denote P1 % P0 if for all x ∈ Ẽ and B ∈ Ẽ
P1(x ,B\{x}) ≥ P0(x ,B\{x})

Do we have

P1 % P0 =⇒ var(P1, f ) ≤ var(P0, f ) , for all f ∈ F ?

Proposition 2

In the previous setup, assume that for i ∈ {0, 1}

P1(x ,E\Ẽ) ≤ P0(x ,E\Ẽ) , x ∈ E

then

P1 % P0 ⇒ P0 − P1 is positive on F 6⇒ var(P1, f ) ≤ var(P0, f ) , for all f ∈ F
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I Test functions are

F := {f ∈ L2(π) : ∀ x ∈ E, f (x) = f (x)1{x∈Ẽ}}
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The Peskun-Tierney route

Peskun and Tierney have used the following fact in their proof

f ∈ L2,0(π) , var(P, f ) = lim
λ→0

Varπf (X )

[
1 + 2

∞∑
t=1

λt〈f ,P t f 〉

]
.

It is remarkable to be able to show that

var(P1, f ) ≤ var(P0, f ) , for all f ∈ L2,0(π)

given only that

I 〈f ,P1f 〉 ≤ 〈f ,P0f 〉 (for all f ∈ L2,0(π))

and in particular by not caring whether or not

I 〈f ,P t
1f 〉 ≤ 〈f ,P t

0f 〉 , t > 1

A careful analysis of Peskun and Tierney’s proof show that it is essential that

P0 − P1 be a positive operator on the whole L2,0(π)
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Application 1: a weighted random scan Gibbs sampler
Consider E = {1, . . . ,m}d the d-dimensional hypercube with m-length side and

π = (1− σ)unif(Ẽ) + σunif(E\Ẽ) , σ ∈ [0, 1)

where Ẽ is the sequence of neighbouring states along edges as follow :

1

2

5

3

4 5

4

43

5

3
2

2
1 1

Figure: Illustration of π with d = 3 and m = 5.

Here, sampling from π is easy but pretend it is not.
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Application 1: a weighted random scan Gibbs sampler

Random scan Gibbs sampler to sample from π: a Markov chain {Xt} whose
transition Xt 7→ Xt+1 is as follows:

1. draw a direction uniformly at random I ∼ unif(1, . . . , d)

2. Z ∼ πI ( · |Xt(1), . . . ,Xt(i − 1),Xt(i + 1), . . . ,Xt(d))

3. set Xt+1 = (Xt(1), . . . ,Xt(i − 1),Z ,Xt(i + 1), . . . ,Xt(d))

Possible next states from Xt = (3, 1, 1) are circled

We have

Pr[Xt = Xt+1] ≥ 2

3

1− σ
1 + 3σ

=
d − 1

d

1− σ
1 + (m − 2)σ

consider the case d →∞?
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Application 1: a weighted random scan Gibbs sampler
Define for all i ∈ {1, . . . , d}

pi (x) ∝
d∑

a=1

π(x(1), x(2), . . . , a, . . . , x(d)) , x = (x(1), . . . , x(d)) ∈ E

such that (p1(x), . . . , pd(x)) is a probability on {1, . . . , d}.

Locally weighted Random scan Gibbs sampler to sample from π: a Markov
chain {Xt} whose transition Xt 7→ Xt+1 is as follows:

1. draw a direction uniformly according to I ∼ (p1(Xt), p2(Xt), . . . , pd(Xt))
2. Z ∼ πI ( · |Xt(1), . . . ,Xt(i − 1),Xt(i + 1), . . . ,Xt(d))
3. let X ′ = (Xt(1), . . . ,Xt(i − 1),Z ,Xt(i + 1), . . . ,Xt(d))
4. set Xt+1 = X ′ w.p. min(1, pI (X

′)/pI (Xt)) and Xt+1 = Xt otherwise
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1. draw a direction uniformly according to I ∼ (p1(Xt), p2(Xt), . . . , pd(Xt))
2. Z ∼ πI ( · |Xt(1), . . . ,Xt(i − 1),Xt(i + 1), . . . ,Xt(d))
3. let X ′ = (Xt(1), . . . ,Xt(i − 1),Z ,Xt(i + 1), . . . ,Xt(d))
4. set Xt+1 = X ′ w.p. min(1, pI (X

′)/pI (Xt)) and Xt+1 = Xt otherwise
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Application 1: a weighted random scan Gibbs sampler
We have two competing algorithms to sample from π

I P0 the usual random scan Gibbs sampler,

I P1 the locally weighted random scan Gibbs sampler, which draws the
direction in an ”informed’ way.

Proposition 3

There is a conditional Peskun ordering, conditionally on Ẽ :

(x , y) ∈ Ẽ2 , x 6= y , P1(x , y) ≥ P0(x , y) .

Plot of var(P, f ) for different d and two test functions f (x) = 1{x=(1,1,1)} (left)
and f (x) = 1{x=(1,2,1)} (right).
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Application 1: a weighted random scan Gibbs sampler
I The previous results show that var(P1, f ) 6≤ var(P0, f ) for all f ∈ L2,0(π)

and in fact it seems that for a lot of those functions
var(P1, f )� var(P0, f )!

I However the following somewhat ’degenerate’ case is interesting.

Proposition 4

Let σ = 0. Then for all f ∈ L2,0(π),

var(P1, f ) ≤ 2

d
var(P0, f ) .

⇒ continuity as σ → 0?
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Figure: For the two functions f (x) = 1{x=(1,1,1)} (left) and f (x) = 1{x=(1,2,1)} (right).
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Main result
Idea: working not on the whole f ∈ L2,0(π) (too difficult), not on some fixed
subset F which ignores parts of L2,0(π) (not enough) but on some subset
L2,0(π̃θ) which eventually contains all the interesting functions in a limit sense.

I state-space and/or statistical model has a controllable parameter θ > 0:

E ≡ Eθ, π ≡ πθ, Pi ≡ Pi,θ

I define restricted kernels to some subset Ẽθ ⊂ Eθ

P̃i,θ(x ,B) := Pi,θ(x ,B ∩ Ẽθ) + δx(B)Pi,θ(x ,B\Ẽθ) , (x ,B) ∈ Ẽθ × Ẽθ

If we ask that
I πθ concentrates on Ẽθ,

lim
θ→∞

πθ(Ẽθ) = 1

I a Peskun-Tierney ordering holds for the restricted kernels

P̃1,θ(x ,B\{x}) ≥ P̃0,θ(x ,B\{x})

for each θ > 0.

Do we have that for a large enough θ,

var(P1,θ, f ) ≤ var(P0,θ, f ) , for all f ∈ F

for a rich enough class of functions F?
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lim
θ→∞
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Main result
Assume that
I πθ concentrates on Ẽθ,

lim
θ→∞

πθ(Ẽθ) = 1

I a Peskun-Tierney ordering holds for the restricted kernels

P̃1,θ(x ,B\{x}) ≥ ω(θ)P̃0,θ(x ,B\{x})
for each θ > 0 with

lim
θ→∞

ω(θ) = 1 .

Theorem 1
Under the previous assumptions, assume in addition that the right spectral gaps
of (Pi,θ, P̃i,θ), i ∈ {0, 1} are bounded away from zero. Then for all ε > 0, for
certain collection of functions {fθ} ∈ F , there exists θ0 ≡ θ0(fθ) > 0, such that

θ > θ0 ⇒ var(P1,θ, fθ) ≤ 1

1− εvar(P0,θ, fθ) + ε .

Remarks:
I here F is a class of functions for which ‖fθ‖2+δ does not grow too fast

comparatively to 1/(1− π(Ẽθ))
I we can relax the spectral gap assumptions, but result holds for a smaller

class of functions F and needs π to concentrates sufficiently fast on Eθ
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Application 1: a weighted random scan Gibbs sampler

I Unsurprisingly, the spectral gap of the locally weighted RSGS P1 goes to
zero when σ → 0, so it is not covered by Theorem 1.

I We consider a slight modification of P1, denoted P∗1 whose weights are
now defined as

p∗(x) = (p∗1 (x), p∗2 (x), . . . , p∗d (x)) , p∗i (x) = max(pi (x), 1/d2) .

I The spectral gap of P∗1 is now bounded away from 0 and Theorem 1
applies for some F .
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Discussion
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When are non-reversible Markov chains better?

I Gustafson’s Guided Walk (GW) (1998): a very easy way to construct a
non-reversible version of Random Walk Metropolis-Hastings (MH)
samplers in one dimension.

I Andrieu and Livingstone (2020) have shown that GW can never increase
the asymptotic variance of a MH.

I Gagnon and Maire (2020) propose a generalization of Gustafson’s
Guided-Walk for sampling from distributions defined on

E = {−1, 1}n

I similar algorithms have been proposed by Kamatani and Song (2020) and
Power and Goldman (2020).

I these algorithms are all lifted non-reversible MCMC but the theory of
Andrieu and Livingstone (2020) does not guarantee that they inherit from
GW their superiority over MH.

We showed that a weak Peskun ordering holds between MH and our
generalized Guided-Walk and thus we obtain conditions on which our
generalized Guided-Walk is better than MH. Without those conditions, the
Guided-Walk do not always dominate MH!
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Discussion and related problems
We have presented a new technique to compare, up to an arbitrary low
approximation error, the asymptotic variance of two π-rev. MCMC samplers

I needs a controllable parameter θ: noise level, state-space dimension,
sample size, etc.

I key is to define a set Ẽθ on which a (relaxed) Peskun-Tierney ordering
holds between the kernels restricted to Ẽθ

I results holds in a θ limit sense, provided πθ concentrates on Ẽθ
I Not the whole L2,0(πθ) is covered but only a subset of it

We have applied this technique successfully to

I Defining a scalable locally-weighted Gibbs sampler which dominates the
random scan Gibbs sampler useful for noise-vanishing distributions, here
θ = σ the noise level

I Compare a generalization of the one-dimensional Lifted MCMC with MH,
here E = {−1, 1}n and θ = n

This research is related to a number of questions dealing with the analysis of
Markov chains that are only (super)-efficient on a portion of the state-space

I Approximate spectral gaps for Markov chains mixing times in high
dimensions, Atchadé (2019)

I Complexity Results for MCMC derived from Quantitative Bounds, Yang
and Rosenthal (2019)
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I Not the whole L2,0(πθ) is covered but only a subset of it

We have applied this technique successfully to

I Defining a scalable locally-weighted Gibbs sampler which dominates the
random scan Gibbs sampler useful for noise-vanishing distributions, here
θ = σ the noise level

I Compare a generalization of the one-dimensional Lifted MCMC with MH,
here E = {−1, 1}n and θ = n

This research is related to a number of questions dealing with the analysis of
Markov chains that are only (super)-efficient on a portion of the state-space

I Approximate spectral gaps for Markov chains mixing times in high
dimensions, Atchadé (2019)
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I Not the whole L2,0(πθ) is covered but only a subset of it

We have applied this technique successfully to

I Defining a scalable locally-weighted Gibbs sampler which dominates the
random scan Gibbs sampler useful for noise-vanishing distributions, here
θ = σ the noise level

I Compare a generalization of the one-dimensional Lifted MCMC with MH,
here E = {−1, 1}n and θ = n

This research is related to a number of questions dealing with the analysis of
Markov chains that are only (super)-efficient on a portion of the state-space

I Approximate spectral gaps for Markov chains mixing times in high
dimensions, Atchadé (2019)
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I Not the whole L2,0(πθ) is covered but only a subset of it

We have applied this technique successfully to

I Defining a scalable locally-weighted Gibbs sampler which dominates the
random scan Gibbs sampler useful for noise-vanishing distributions, here
θ = σ the noise level

I Compare a generalization of the one-dimensional Lifted MCMC with MH,
here E = {−1, 1}n and θ = n

This research is related to a number of questions dealing with the analysis of
Markov chains that are only (super)-efficient on a portion of the state-space

I Approximate spectral gaps for Markov chains mixing times in high
dimensions, Atchadé (2019)
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Metropolis-Hastings: Random Walk on E
Two components:

(1) For all x ∈ E, let N(x) be a neighborhood structure on E s.t.

y ∈ N(x)⇒ x ∈ N(y) .

(2) Let {R(x , ·)} be a collection of conditional dist. on E s.t.

R(x ,N(x)) = 1 .

Metropolis-Hastings Set X0 ∈ E, t = 0

(i) propose a move:
I X̃ ∼ R(Xt , ·)

(ii) accept/reject of the move: set Xt+1 = X̃ w.p.

α0(Xt , X̃ ) = 1 ∧ π(X̃ )

π(Xt)
× R(X̃ ,Xt)

R(Xt , X̃ )

and set Xt+1 = Xt otherwise. Set t ← t + 1.

Repeat (i)-(ii) to generate {Xt}.
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Lifted MCMC: generalization of the Guided Walk on E
Three components:

(1)–(2) A neighborhood structure and a collection of conditional dist.

N(x) and R(x , ·) , ∀ x ∈ E .

(3) A neighborhood splitting mechanism

N(x) = N1(x) ∪N−1(x) with N1(x) ∩N−1(x) = ∅ .

which also induces

R1(x , · ) ∝ R(x , · ∩N1(x)) and R−1(x , · ) ∝ R(x , · ∩N−1(x))

Lifted MCMC Set X0 ∈ E, ξ0 ∈ {−1, 1}, t = 0

(i) propose a move:
I X̃ ∼ Rζt (Xt , ·)

(ii) accept/reject of the move: set (Xt+1, ζt+1) = (X̃ , ζt) w.p.

αLIF(Xt , X̃ | ζt) = 1 ∧ π(X̃ )

π(X0)
× R−ζt (X̃ ,Xt)

Rζt (Xt , X̃ )
.

and (Xt+1, ζt+1) = (X̃ ,−ζt). Set t ← t + 1.

Repeat (i)-(ii) to generate {Xt , ξt}.
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Comparison Metropolis-Hastings vs Lifted MCMC
I Metropolis-Hastings P0

(i) X̃ ∼ R(Xt , ·)

(ii) accept/reject X̃ w.p. α0(Xt , X̃ ) = 1 ∧ π(X̃ )

π(Xt)
× R(X̃ ,Xt)

R(Xt , X̃ )

I Lifted MCMC P1

(i) X̃ ∼ Rξt (Xt , ·)

(ii) accept/reject X̃ w.p. α1(Xt , X̃ | ξt) = 1 ∧ π(X̃ )

π(Xt)
× R−ξt (X̃ ,Xt)

Rξt (Xt , X̃ )

I introduce a reversibilisation of P1, called P rev
1

(i) ξt ∼ unif(−1, 1) , X̃ ∼ Rξt (Xt , ·)

(ii) accept/reject X̃ w.p. α1(Xt , X̃ | ξt) = 1 ∧ π(X̃ )

π(Xt)
× R−ξt (X̃ ,Xt)

Rξt (Xt , X̃ )

From Andrieu and Livingstone (2020), we know that for all f ∈ L2(π)

var(P1, f ) ≤ var(P rev.
1 , f )

?

T var(P0, f )
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Comparison Metropolis-Hastings vs Lifted MCMC
Recall En = {−1, 1}n, define
I R(x , ·) = unif(N(x)), R1(x , ·) = unif(N1(x)), R−1(x , ·) = unif(N−1(x))
I set N(x) = {y ∈ E :

∑n
k=1 |xk − yk | = 2} and

N1(x) = {y ∈ N(x) : yk ≥ xk}.

We define the collection of sets {Ẽn}
Ẽn := {x ∈ En : n/2− ϕn ≤ |N−1(x)|, |N+1(x)| ≤ n/2 + ϕn},

where {ϕn} is a sequence such that ϕn = o(n).
⇒ Ẽn contains those states for which |N−1(x)| ≈ |N−1(x)|, when n is large.

Theorem 2
Assume that

1. {ϕn} can be chosen so that πn(Ẽn)→ 1

2. the spectral gaps of (Pi,n, P̃i,n), i ∈ {0, 1} are bounded away from 0

Then for any ε > 0 and for certain collections of functions {fn} ∈ F ⊂ L2,0(πn)
with ‖fn‖2 = 1,

var(P1,n, fn) ≤ 1

1− εvar(P0,n, fn) + ε

holds for a sufficiently large n ≡ n(fn).
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Ẽn := {x ∈ En : n/2− ϕn ≤ |N−1(x)|, |N+1(x)| ≤ n/2 + ϕn},

where {ϕn} is a sequence such that ϕn = o(n).
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Ising model

We consider an Ising model defined on a two-dimensional lattice
{1, . . . , η} × {1, . . . , η}. A state is a lattice whose vertices are {−1, 1} such
that

Figure: Realisation of an Ising lattice with η = 20, the lattice vertices are in
{1, . . . , 20} × {1, . . . , 20}. Black filling indicates that a vertice is 1 and white filling is
−1.
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Ising model
We see each Ising lattice as a n = η2-dimensional vector in {−1, 1}n. The
general model is

π(x) =
1

Z
exp

{
n∑

i=1

αixi + λ
∑
i∼j

xixj

}
with αi ∈ R, λ ≥ 0 and i ∼ j is set of neighboring vertices on the lattice
(typically North-South-West-East).
I λ can be seen as an interaction parameter and control the size of color

patches
I αi can be seen as a mean value field, for instance

⇒ λ and {αi} are known (drawn αi ∼iid N (µ = 1, τ)), the goal is to sample
from π.
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Empirical results 1
Here, we fix λ = 1/2 and {αi} as in the previous figure and increase η, i.e. n.

Again, we define

N(x) =

{
y ∈ E :

n∑
k=1

|xk − yk | = 2

}
, N1(x) = {y ∈ N(x) : yk ≥ xk} .

We use the uniform and locally balanced proposal (Zanella, 2020) for {R(x , ·)}.
Function of interest is fn(x) =

∑n
k=1 xk (system magnetisation)

Quantitatively, we have that

var(P0, fn)/var(P1, fn) ∈ {7, 10, 20} when n ∈ {502, 502×10, 502×100}
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Empirical results 2

We now fix n = 502 and λ = 1/2 but change {αi ∼ N (µ, τ)} to increase the
contrast between the two sides of the lattice: the higher µ the larger the
contrast.

Increasing µ essentially increases the roughness of πn which concentrates on a
few configurations only, disabling the Lifed MCMC persistent move feature.

39 / 39


	Context: MCMC, CLT and Peskun ordering
	Main result
	Discussion
	More on Lifted MCMC

