Nonparametric Density Estimation

Athanasios G. Georgiadis

Assistant Professor, Trinity College of Dublin.

SCSS, May 12 2021

Contents

1 [Concept](#page-2-0)

- [Minimax density estimation on](#page-7-0) \mathbb{R}^d
- [An overview of the techniques](#page-9-0)
- [Perspective and progress](#page-29-0)

2 [Density estimation on manifolds](#page-31-0)

- [Challenge](#page-38-0)
- [A broad framework](#page-39-0)
- [Kernel Density Estimators](#page-46-0)

Motivation

Assume that a phenomenon under study is expressed by a random variable (rv) X distributed on some space M . For having a full understanding of X , we need to know its

Probability Density Function (PDF) $f_X(x) = f(x)$, $x \in M$.

In practice we rarely know f and we must "learn" it based on our data.

KORKAR KERKER SAGA

[Nonparametric Density Estimation](#page-0-0) [Concept](#page-2-0)

Parametric estimation

Methods of parametric estimation go back to Fisher.

If X belongs to a parametric class e.g $X \sim \mathcal{N}(\mu, \sigma^2)$, then it suffices to estimate the corresponding parameters.

KORKARYKERKER POLO

But such an assumption may not be valid.

Nonparametric density estimation: Concept

- Let X be a rv, with an unknown density f .
- Target: Estimate $f(x)$, $x \in \mathcal{M}$.

• Assume that f belongs to a large function class $\mathbb F$ (continuous, differentiable, Lipschitz cont., Sobolev, Nikol'skii, Besov spaces).

• Let X_1, \ldots, X_n , $n \in \mathbb{N}$, be a random sample; independent rv with the same —unknown— f (iid).

KORKAR KERKER SAGA

Density estimators

• In STAT00 we estimated *parameters*; for example

$$
\hat{\mu} = \frac{X_1 + \cdots + X_n}{n} = g(\mathbf{X}),
$$

where $g: \mathbb{R}^n \to \mathbb{R}$, $g(x_1, \ldots, x_n) = \frac{x_1 + \cdots + x_n}{n}$. • Set $X = (X_1, \ldots, X_n)$. The joint density

$$
f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^n f(x_i), \quad \forall \mathbf{x} = (x_1, \ldots, x_n) \in \mathcal{M}^n.
$$
 (1)

• Density Estimator:
$$
\hat{f}_n(x, \mathbf{X})
$$
, $x \in \mathcal{M}$, where

$$
\hat{f}_n:\mathcal{M}\times\mathcal{M}^n\to\mathbb{R}.
$$

• Measure the estimation in both a stochastic and a functional sense; a risk

$$
\mathcal{R}(\hat{f}_n, f) = \mathbb{E}\bigg(\bigg\|\hat{f}_n - f\bigg\|_p\bigg), \quad \text{for } p \geq 1 \tag{2}
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

measures successfully the loss of such an estimation.

[Nonparametric Density Estimation](#page-0-0) [Concept](#page-2-0)

Construct estimators st the risk over all pdfs lying on a large function space $\mathbb F$ to be as small, as possible.

[Nonparametric Density Estimation](#page-0-0) [Concept](#page-2-0) [Minimax density estimation on](#page-7-0) \mathbb{R}^d

The solution on \mathbb{R}^d

 (α) Smoothness is needed \mathbb{F} : e.g. Sobolev spaces W^s_p . (β) Kernel Density Estimators $\hat{f}^{\mathcal{K}}_{n}$ (*γ*) Giving an upper bound

$$
\sup_{f\in\mathbb{F}}\mathcal{R}(\hat{f}_n^K, f) \leq Cn^{-r}, \quad r = \frac{s}{2s+d} \tag{3}
$$

(*δ*) And a Lower bound

$$
\inf_{\hat{f}_n} \sup_{f \in \mathbb{F}} \mathcal{R}(\hat{f}_n, f) \ge cn^{-r}, \tag{4}
$$

KORKARYKERKER POLO

i.e. we cannot do better, the above r is the optimal one; *minimax* estimation.

[Nonparametric Density Estimation](#page-0-0) [Concept](#page-2-0) [Minimax density estimation on](#page-7-0) \mathbb{R}^d

On the rate

The rate for densities on \mathbb{R}^d , of smoothness s is n^{-r} ,

$$
r = \frac{s}{2s + d} \tag{5}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- It depends both on the smoothness and the dimension.
- The smoother the density, the faster the estimation.
- The higher the dimension, the worst the estimation.

Kernel density estimation

- Murray Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 1956.
- Emanuel Parzen, On estimation of probability density function and mode Ann. Math. Stat. 1962.
- Alexander Tsybakov, Introduction to nonparametric estimation.

KORK ERKER ADAM ADA

Norms in vector spaces

Let V be a vector space. The norm $||v||$ of any vector $v \in V$ is a way to count the size of v.

E.g. 1. On \mathbb{R}^2 : $\|(x,y)\| = \sqrt{x^2 + y^2}$, for every $(x,y) \in \mathbb{R}^2$. A sequence on \mathbb{R}^2 :

$$
\vec{a}_n = \Big(\frac{1}{n} + 1, \frac{1}{n^2} + 2\Big), \quad n \in \mathbb{N}.
$$

We say that $\vec a_n \to (1,2) \in \mathbb{R}^2$, because

$$
\|\vec{a}_n - (1,2)\| = \left\| \left(\frac{1}{n}, \frac{1}{n^2} \right) \right\| = \sqrt{\frac{1}{n^2} + \frac{1}{n^4}} \to 0.
$$

Norms for functions

• We need to count distances $d(f, g) = ||f - g||$, between functions.

• Let $p \geq 1$ and $g : \mathcal{M} \to \mathbb{R}$, then $g \in L^p(\mathcal{M})$ (Lebesgue) if-f

$$
\|g\|_p := \left(\int_{\mathcal{M}} |g(x)|^p dx\right)^{1/p} < \infty.
$$
 (6)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

• When $p = 1$ and $\mathcal{M} = [0, 1]$, then

$$
\|g\|_1 = \int_0^1 |g(x)| dx = \text{Area plot } x\text{-axis.}
$$

Remarks

- Clearly when f is a PDF; $||f||_1 = 1$.
- L^{∞} is the space containing all the (essentially) bounded functions.
- Interpolation property of Lebesgue spaces: Let
- $1 \leq p_1 \leq p_2 \leq \infty$. Then

 $f \in L^{p_1} \cap L^{p_2} \Rightarrow f \in L^p$, for every $p_1 < p < p_2$. (7)

KORKARYKERKER POLO

• E.g. If f is a bounded PDF, then $f \in L^p$, for every $p \in [1,\infty]$.

Risk

Let f be unknown and \hat{f}_n be an estimator of it. We define the L^p -risk as

$$
\mathcal{R}(\hat{f}_n, f) := \left(\mathbb{E}(\|\hat{f}_n - f\|_p^p)\right)^{1/p} \tag{8}
$$
\n
$$
= \left(\int_{\mathcal{M}} \cdots \int_{\mathcal{M}} \left(\int_{\mathcal{M}} |\hat{f}_n(x, x) - f(x)|^p dx\right) \prod_{i=1}^n f(x_i) dx_i\right)^{\frac{1}{p}}.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

KDEs Parzen Annals Math Stat (62)

- X is distributed on $\mathcal{M} = \mathbb{R}$.
- CDF: $F(x) = \int_{-\infty}^{x} f(t)dt = \mathbb{P}(X \leq x)$.
- Let $x \in \mathbb{R}$. We define the empirical estimator of the CDF

$$
\widehat{F}_n(x) = \frac{\#\{X_i : X_i \le x\}}{\#\{X_i\}}\n= \frac{1}{n} \sum_{i=1}^n I(\{X_i \le x\}) \longrightarrow F(x) = \mathbb{P}(X \le x), \quad n \to \infty
$$

by SLLN and where *I* the indicator function.

• On the other hand

$$
f(x) = \lim_{h \to 0} \frac{F(x+h) - F(x-h)}{2h}.
$$
 (9)

Rosenblatt's kernel

Combining the above we set:

$$
\hat{f}_n^R(x) := \frac{1}{2nh} \sum_{i=1}^n I(x - h < X_i \le x + h)
$$
\n
$$
=: \frac{1}{nh} \sum_{i=1}^n K_0\left(\frac{X_i - x}{h}\right),\tag{10}
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

where $\mathcal{K}_0(u):=\frac{1}{2} \mathcal{I}(-1 < u \leq 1)$ Rosenblatt's kernel (rectangular kernel). The positive number h is called bandwidth (and it is supposed to be arbitrary small).

• Triangular, Gaussian kernels etc.

• $n \to \infty$ and $h = h_n \to 0$, but we already observe that this has to be done carefully.

Kernel Density Estimators (KDEs)

• More generally $K : \mathbb{R} \to \mathbb{R}$ kernel;

$$
\int_{\mathbb{R}} K(z)dz = 1.
$$
 (11)

KORKARYKERKER POLO

Kernel density estimator (KDE)

$$
\hat{f}_n(x) := \hat{f}_n^K(x; \mathbf{X}) := \frac{1}{nh} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right).
$$
 (12)

• $h = h_n \rightarrow 0$, when $n \rightarrow \infty$; the bandwidth.

J

Agenda

Target: Well-estimate f by \hat{f}_n .

 (α) Fix assumptions on the densities' class (determine F). (β) Construct some kernels K and therefore estimators \hat{f}_n^* (*γ*) Giving a rate of convergence

$$
\sup_{f\in\mathbb{F}}\mathcal{R}(\hat{f}_n^*,f)\leq Cn^{-r},\qquad(13)
$$

with $r > 0$, to be determined. (*δ*) Prove that

$$
\inf_{\hat{t}_n} \sup_{f \in \mathbb{F}} \mathcal{R}(\hat{t}_n, f) \geq cn^{-r}, \tag{14}
$$

KORKARYKERKER POLO

i.e. we cannot do better, the above r is the optimal one; *minimax* estimation.

[Nonparametric Density Estimation](#page-0-0) [Concept](#page-2-0)

[An overview of the techniques](#page-9-0)

Approaching the problem: an elementary form

• Specify $p = 2$, refer to the corresponding risk as Mean Integrated Squared Error. MISE $(\hat{f}_n, f) := \mathcal{R}(\hat{f}_n, f)^2$.

• Target:

$$
MISE(\hat{f}_n, f)^{1/2} \le cn^{-r}, \quad \text{for some } r > 0. \tag{15}
$$

• Decomposition

$$
MISE(\hat{f}_n, f) = ||b||_2^2 + ||\sigma^2||_1,
$$
\n(16)

where the two terms above are the bias and variance:

$$
b(x) := \mathbb{E}\big[\hat{f}_n(x; \boldsymbol{X})\big] - f(x) \tag{17}
$$

KORKARYKERKER POLO

and

$$
\sigma^{2}(x) := \mathbb{E}\bigg[\bigg(\hat{f}_{n}(x; \boldsymbol{X}) - \mathbb{E}\big[\hat{f}_{n}(x; \boldsymbol{X})\big]\bigg)^{2}\bigg]. \qquad (18)
$$

We study these two terms independently.

[Nonparametric Density Estimation](#page-0-0)

[Concept](#page-2-0)

[An overview of the techniques](#page-9-0)

Bounding variance

Proposition

If $K \in L^2$, then for every pdf t

$$
\|\sigma^2\|_1 \le \frac{\|K\|_2^2}{nh},
$$
\n(19)

Remarks:

 (α) No assumptions on f; just a pdf! (β) h = h_n \rightarrow 0, but carefully! E.g. for $h \sim n^{-(1-r)}$, 0 < r < 1, we derive

$$
\left\|\sigma^2\right\|_1 \leq cn^{-r}.
$$

KORKARYKERKER POLO

(*γ*) Proof: just Fubini-Tonelli Theorem and iid.

Bounding bias: Regularity assumption in f

• Since $\int K = 1$, we simplify

$$
b(x) = \int_{\mathbb{R}} K\left(\frac{y-x}{h}\right) (f(y) - f(x)) \frac{dy}{h}
$$
 (20)
=
$$
\int_{\mathbb{R}} K(z) (f(x + hz) - f(x)) dz.
$$

- Where is the n^2 Inside h
- Here we need some regularity for the pdf to be assumed:

Taylor

We assume that $f \in \mathcal{C}^s$, for some $s \in \mathbb{N}$. Then Taylor's formula asserts

$$
f(x + hz) - f(x) = \sum_{\nu=1}^{s-1} \frac{f^{(\nu)}(x)}{\nu!} (hz)^{\nu} + R_s(f), \qquad (21)
$$

where

$$
R_s(f) := \int_0^1 (hz)^s \frac{(1-t)^{s-1}}{(s-1)!} f^{(s)}(x+thz) dt \qquad (22)
$$

KO K K Ø K K E K K E K V K K K K K K K K K

[Nonparametric Density Estimation](#page-0-0)

[Concept](#page-2-0)

[An overview of the techniques](#page-9-0)

Bias

$$
b(x) = \sum_{\nu=1}^{s-1} \frac{f^{(\nu)}(x)}{\nu!} h^{\nu} \int_{\mathbb{R}} z^{\nu} K(z) dz
$$

+ $h^{s} \int_{\mathbb{R}} \int_{0}^{1} \frac{(1-t)^{s-1}}{(s-1)!} f^{(s)}(x+thz) z^{s} K(z) dt dz$ (23)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Bounding bias: Moments for the kernel

- The decay is aligned in the powers of h .
- We put the following assumption on the kernel:

Zero moments up to the order $s - 1$:

$$
\int_{\mathbb{R}} z^{\nu} K(z) dz = 0, \quad \text{for every } \nu = 1, \ldots, s-1.
$$
 (24)

Under these vanishing moments and [\(23\)](#page-22-0):

$$
b(x) = h^{s} \int_{\mathbb{R}} K(z) z^{s} \int_{0}^{1} \frac{(1-t)^{s-1}}{(s-1)!} f^{(s)}(x+thz) dt dz.
$$
 (25)

Smoothness spaces naturally pop up

- Recall that we're estimating the square norm of $b(x)$.
- Choosing my kernel such that

$$
[K]_s := \int_{\mathbb{R}} |z^s| |K(z)| dz < \infty, \qquad (26)
$$

Minkowski's inequality for integrals $\left(\| \int g(\cdot,z) dz \|_p \leq \int \| g(\cdot,z) \|_p dz \right)$ implies:

$$
||b||_2 \le \frac{[K]_s}{s!} ||f^{(s)}||_2 h^s. \tag{27}
$$

KORKARYKERKER POLO

Sobolev spaces are present.

Sobolev spaces

Measure the smoothness and integrability of a function. Let $s \in \mathbb{N}$ and $p \geq 1$, the Sobolev space W^s_p , consists of all the functions such that

$$
f \in W_{\rho}^s \Longleftrightarrow \|f\|_{W_{\rho}^s} := \sum_{\nu=0}^s \left\|f^{(\nu)}\right\|_{\rho} < \infty. \tag{28}
$$

Of course $L^p = W_p^0 \supset W_p^1 \supset W_p^2 \supset \cdots$. Let also $m > 0$. We denote by $W^s_p(m) := \{ f : \| f \|_{W^s_p} \leq m \}.$

Proposition

Let $s \in \mathbb{N}$, $m > 0$ and K satisfying [\(11\)](#page-16-0), [\(24\)](#page-23-0) and [\(26\)](#page-24-0), then there exists a constant $c = c(K, s, m) > 0$:

$$
||b||_2 \leq ch^s, \quad \text{for every } f \in W_p^s(m). \tag{29}
$$

KORKAR KERKER ST VOOR

Kernels' choice

- A kernel $K : \mathbb{R} \to \mathbb{R}$ as above will be called a kernel of order s; $\mathcal{K}(s)$.
- Of course K(S) ⊂ K(s), for S *>* s.

• Yes, there exist such kernels. A classical construction involves Legendre polynomials. Another option is by using the properties of the Fourier transform. Plenty of examples appropriate for applications.

Bandwidth selection

By all the previous steps:

$$
\sup_{f \in W_2^s(m)} \text{MISE}(\hat{f}_n, f) \le \frac{\|K\|_2^2}{nh} + \Big(\frac{[K]_s m}{s!}\Big)^2 h^{2s}.
$$
 (30)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

• We choose the bandwidth $h = h_n$ st the right hand side to be minimized.

[Nonparametric Density Estimation](#page-0-0)

[Concept](#page-2-0)

[An overview of the techniques](#page-9-0)

Bretagnolle and Huber ('79) and Haminskii, Ibragimov ('80)

Theorem

Let $s\in\mathbb{N}$, $p\geq 2$ and $m>0.$ Then the KDE \hat{f}_n associated with a kernel K of order s and $h \sim n^{-1/(2s+1)}$ satisfies:

$$
\sup_{f \in W_p^s(m)} \mathcal{R}(\hat{f}_n, f) \le c n^{-s/(2s+1)}.
$$
\n(31)

KORKARYKERKER POLO

Moreover the estimation is minimax.

[Nonparametric Density Estimation](#page-0-0) [Concept](#page-2-0) [Perspective and progress](#page-29-0)

Perspective

• Given that I don't know of course the smoothness level of f, what can I do? • Use a kernel of order s, according to how fast is your PC and how much counts for you the accuracy.

• What type of a kernel could work for any smoothness level, optimal?

• Littlewood-Paley/ bump: Infinitely differentiable, Compactly supported, unit around the origin.

• I neither know the p for $f...$

• Adaptive estimation. Disconnect the integrability levels between the risk and the densities. Different rates. Wavelet estimators.

• Can we do anything with the dimension?

• The question finds answer in the geometry of the data's domain. Density estimation on spheres or manifolds.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

[Nonparametric Density Estimation](#page-0-0)

[Concept](#page-2-0)

[Perspective and progress](#page-29-0)

Progress in the area: key developments on \mathbb{R}^d

- Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D., Density estimation by wavelet thresholding. Ann. Stat. 24, 508-539 (1996).
- Efroimovich, S.Yu., Non-parametric estimation of the density with unknown smoothness. Ann. Stat. 36, 1127-1155 (1986).
- Kerkyacharian, G., Lepski, O., Picard, D., Nonlinear estimation in anisotropic multiindex denoising Sparse case. Theory Probab. Appl. 52, 58–77 (2008)
- Goldenshluger, A., Lepski, O., Uniform bounds for norms of sums of independent random functions. Ann. Probab. 39, 2318-2384 (2011).
- Goldenshluger, A., Lepski, O., Bandwidth selection in kerrnel density estimation: oracle inequalities and adaptive minimax optimality. Ann. Stat. 39, 1608-1632 (2011).
- Goldenshluger A., Lepski O., Minimax estimation of norms of a probability density: I. Lower bounds -2020-
- Goldenshluger A., Lepski O., Minimax estimation of norms of a probability density: II. Rate-optimal estimation procedures -2020-

Motivation

Geostatistics, Climatology, Environmental studies, Astrophysics, Oceanography, Seismology...

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Manifolds

メロトメ 御 トメ 君 トメ 君 トー 君 2990

$$
\mathbb{T}^m = \{x \in \mathbb{R}^m : x_i > 0, x_1 + \cdots + x_m < 1\}.
$$
 (32)

イロト イ団 トイミト イミト 一毛

 299

SPIDER WEB FROM EXHIBITION ON AIR TOMAS **SARACENO**

KO KKOKKEKKEK E DAG

SPIDER WEB

イロト イ団 トイミト イミト

È

 299

The problem on the sphere.

• The problem has been solved by *needlet estimators* and has been used in applications in astrophysics.

• P. Baldi, G. Kerkyacharian, D. Marinucci, D. Picard, Adaptive density estimation for directional data using needlets. Ann. Statist. 37 (2009), no. 6A, 3362-3395.

KORKAR KERKER SAGA

• Subsampling needlet coefficients on the sphere. Bernoulli 15 (2009), no. 2, 438-463.

Preparation

• All the necessary analysis' background needed to be built for the specific manifold.

• F. Narcowich, P. Petrushev, J. D. Ward, Localized tight frames on spheres. SIAM J. Math. Anal. 38 (2006), no. 2, 574-594. • F. Narcowich, P. Petrushev, J. Ward, Decomposition of Besov and Triebel-Lizorkin spaces on the sphere. J. Funct. Anal. 238 (2006), no. 2, 530-564.

Difficulties

• For studying density estimation on a new manifold we need:

- (*α*) Well defined notion of regularity.
- (*β*) Smoothness spaces.
- (*γ*) Operational tools from Analysis and Geometry.
- (δ) Kernels and/or wavelets or a substitute.

(*ε*) Extraction of the proper Statistical theorems with precise density estimators.

• When the data are located on another manifold, we have to re-face all these...

Work on a general framework unifying as many examples as possible!

Develop the necessary background. Prove the proper statistical results and construct tools for immediate practical use in the most common examples.

• G. Kerkyacharian, P. Petrushev, Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Amer. Math. Soc. 367 (2015), 121–189.

The setting (Roughly speaking)

1 Let (M, ρ, μ) a metric measure space:

 $\mu(B(x,r)) \sim r^d, \quad 0 < d :=$ homogeneous dimension, \quad (33)

KORKARYKERKER POLO

uniformly in $x \in M$, $r > 0$ and $B(x, r) = \{y : \rho(x, y) < r\}$.

2 A suitable operator L determines the notion of smoothness and smoothness spaces.

The setting unifies the Euclidean space, the sphere, the ball, general Riemannian manifolds, spaces of matrices, and more.

Euclidean space

 $\mathcal{M} = \mathbb{R}^d$ and

$$
Lf = -\Delta f = -(\partial_1^2 + \dots + \partial_d^2) f. \tag{34}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Sphere

$$
\mathcal{M} = \mathbb{S}^d = \{ \mathbf{x} \in \mathbb{R}^{d+1} : ||\mathbf{x}|| = 1 \},
$$

$$
\rho(x, y) = \arccos(\langle x, y \rangle), \tag{35}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

µ : the spherical measure and L : the spherical Laplacian.

Ball

$$
\mathcal{M} = \mathbb{B}^d = \left\{ x \in \mathbb{R}^d : ||x|| < 1 \right\},\
$$

$$
\rho(x, y) = \arccos\left(\langle x, y \rangle + \sqrt{1 - ||x||^2} \sqrt{1 - ||y||^2} \right),\tag{36}
$$

$$
d\mu(x) = \left(1 - \|x\|^2\right)^{-1/2} dx \tag{37}
$$

KOK KØK KEK KEK I EL 1990

and

$$
L = -\sum_{i=1}^d \left(1 - x_i^2\right)\partial_i^2 + 2 \sum_{1 \leq i < j \leq d} x_i x_j \partial_i \partial_j + d \sum_{i=1}^d x_i \partial_i. \tag{38}
$$

Contributions

- **1** Start the research of Statistics on a general uniform framework.
- 2 Prepare objects ready for use in applications.
- **3** Kernel and Wavelet density estimators.
- **4** Adaptive upper bounds.
- **6** Optimal rate when restrict on the known examples.
- **6** Oracle inequalities.
- **2** General kernels (and simple in the computational sense).
- ⁸ Expression of the KDEs on several specific examples of common interest.

- ⁹ Lower bound: minimax density estimation.
- **10** Open problems.

Statistics and Probability on the general framework

- ¹ I. Castillo, G. Kerkyacharian, D. Picard, Thomas Bayes' walk on manifolds. Probab. Theory Related Fields 158 (2014), no. 3-4, 665-710.
- ² G. Kerkyacharian, S. Ogawa, S., P. Petrushev, D. Picard, Regularity of Gaussian processes on Dirichlet spaces. Constr. Approx. 47 (2018), no. 2, 277-320.
- ³ G. Cleanthous, g., G. Kerkyacharian, P. Petrushev, D. Picard, Kernel and wavelet density estimators on manifolds or more general metric spaces. Bernoulli. 26, No. 3, 1832-1862 (2020).

KORKAR KERKER SAGA

⁴ G. Cleanthous, g., E. Porcu, Oracle inequalities and upper bounds for kernel density estimators on manifolds or more general metric spaces. Submitted.

[Nonparametric Density Estimation](#page-0-0) [Density estimation on manifolds](#page-31-0) [Kernel Density Estimators](#page-46-0)

Kernel density estimators

- Let $K : [0, \infty) \to \mathbb{R}$ with rapid decay (symbol).
- Let h *>* 0 a microscopic quantity called "bandwidth". We denote by K_h the function $K_h(\lambda) = K(h\lambda)$, $\lambda \geq 0$. (dilation).
- Spectral theory gives rise to a function

$$
\mathcal{K}_h^{\mathcal{L}}(x, y) \quad \text{for every} \quad (x, y) \in \mathcal{M} \times \mathcal{M} \quad \text{(kernel)}, \tag{39}
$$

with convenient properties.

• We find the proper conditions on the symbols K and the KDE has an abstract form

$$
\hat{f}_{n,h}(x) := \frac{1}{n} \sum_{i=1}^{n} K_h^L(x, X_i).
$$
 (40)

KO KA KO KERKER KONGK

• Construct the above kernels in the examples of special interest.

[Nonparametric Density Estimation](#page-0-0) [Density estimation on manifolds](#page-31-0) [Kernel Density Estimators](#page-46-0)

Kernel density estimators on core examples

•
$$
M = \mathbb{R}^d
$$
,
\n
$$
\hat{f}_{n,h}(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h^d} K\left(\frac{X_i - x}{h}\right).
$$
\n• $M = \mathbb{S}^2$, (41)

$$
\hat{f}_{n,h}(x)=\frac{1}{n}\sum_{i=1}^n\sum_{\ell=0}^\infty\frac{2\ell+1}{|\mathbb{S}^2|}K\left(h\sqrt{\ell(\ell+1)}\right)C_{\ell}^{1/2}(\langle X_i,x\rangle). \tag{42}
$$

[Nonparametric Density Estimation](#page-0-0) [Density estimation on manifolds](#page-31-0) [Kernel Density Estimators](#page-46-0)

Thank you :)

Thank you very much for your attention!!!

