Nonparametric Density Estimation

Athanasios G. Georgiadis

Assistant Professor, Trinity College of Dublin.

SCSS, May 12 2021

Contents

- Concept
 - ullet Minimax density estimation on \mathbb{R}^d
 - An overview of the techniques
 - Perspective and progress
- 2 Density estimation on manifolds
 - Challenge
 - A broad framework
 - Kernel Density Estimators

Motivation

Assume that a phenomenon under study is expressed by a random variable (rv) X distributed on some space \mathcal{M} . For having a full understanding of X, we need to know its

Probability Density Function (PDF)
$$f_X(x) = f(x)$$
, $x \in \mathcal{M}$.

In practice we rarely know f and we must "learn" it based on our data.

Parametric estimation

Methods of parametric estimation go back to Fisher.

If X belongs to a parametric class e.g $X \sim \mathcal{N}(\mu, \sigma^2)$, then it suffices to estimate the corresponding parameters.

But such an assumption may not be valid.

Nonparametric density estimation: Concept

- Let X be a rv, with an unknown density f.
- Target: Estimate f(x), $x \in \mathcal{M}$.
- Assume that f belongs to a large function class \mathbb{F} (continuous, differentiable, Lipschitz cont., Sobolev, Nikol'skii, Besov spaces).
- Let $X_1, ..., X_n$, $n \in \mathbb{N}$, be a random sample; independent rv with the same —unknown— f (iid).

Density estimators

In STAT00 we estimated parameters; for example

$$\hat{\mu} = \frac{X_1 + \cdots + X_n}{n} = g(\boldsymbol{X}),$$

where $g: \mathbb{R}^n \to \mathbb{R}$, $g(x_1, \dots, x_n) = \frac{x_1 + \dots + x_n}{n}$.

• Set $\boldsymbol{X} = (X_1, \dots, X_n)$. The joint density

$$f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} f(x_i), \quad \forall \mathbf{x} = (x_1, \dots, x_n) \in \mathcal{M}^n.$$
 (1)

• Density Estimator: $\hat{f}_n(x, X)$, $x \in \mathcal{M}$, where

$$\hat{f}_n: \mathcal{M} \times \mathcal{M}^n \to \mathbb{R}$$
.

• Measure the estimation in both a stochastic and a functional sense; a risk

$$\mathcal{R}(\hat{f}_n, f) = \mathbb{E}(\|\hat{f}_n - f\|_p), \quad \text{for } p \ge 1$$
 (2)

measures successfully the loss of such an estimation.

Target:

Construct estimators st the risk over all pdfs lying on a large function space \mathbb{F} to be as small, as possible.

The solution on \mathbb{R}^{d}

- (α) Smoothness is needed \mathbb{F} : e.g. Sobolev spaces W_p^s .
- (β) Kernel Density Estimators \hat{f}_n^K
- (γ) Giving an upper bound

$$\sup_{f \in \mathbb{F}} \mathcal{R}(\hat{f}_n^K, f) \le C n^{-r}, \quad r = \frac{s}{2s + d}$$
 (3)

 (δ) And a Lower bound

$$\inf_{\hat{f}_n} \sup_{f \in \mathbb{F}} \mathcal{R}(\hat{f}_n, f) \ge c n^{-r}, \tag{4}$$

i.e. we cannot do better, the above r is the optimal one; minimax estimation.

On the rate

The rate for densities on \mathbb{R}^d , of smoothness s is n^{-r} ,

$$r = \frac{s}{2s+d} \tag{5}$$

- It depends both on the smoothness and the dimension.
- The smoother the density, the faster the estimation.
- The higher the dimension, the worst the estimation.

Kernel density estimation

- Murray Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 1956.
- Emanuel Parzen, On estimation of probability density function and mode Ann. Math. Stat. 1962.
- Alexander Tsybakov, Introduction to nonparametric estimation.

Norms in vector spaces

Let V be a vector space. The norm ||v|| of any vector $v \in V$ is a way to count the size of v.

E.g. 1. On \mathbb{R}^2 : $\|(x,y)\| = \sqrt{x^2 + y^2}$, for every $(x,y) \in \mathbb{R}^2$. A sequence on \mathbb{R}^2 :

$$\vec{a}_n = \left(\frac{1}{n} + 1, \frac{1}{n^2} + 2\right), \quad n \in \mathbb{N}.$$

We say that $\vec{a}_n \to (1,2) \in \mathbb{R}^2$, because

$$\|\vec{a}_n - (1,2)\| = \left\| \left(\frac{1}{n}, \frac{1}{n^2} \right) \right\| = \sqrt{\frac{1}{n^2} + \frac{1}{n^4}} \to 0.$$

Norms for functions

- We need to count distances d(f,g) = ||f g||, between functions.
- Let $p \geq 1$ and $g: \mathcal{M} \to \mathbb{R}$, then $g \in L^p(\mathcal{M})$ (Lebesgue) if-f

$$\|g\|_p := \left(\int_{\mathcal{M}} |g(x)|^p dx\right)^{1/p} < \infty.$$
 (6)

• When p=1 and $\mathcal{M}=[0,1]$, then

$$||g||_1 = \int_0^1 |g(x)| dx$$
 = Area plot x-axis.

Remarks

- Clearly when f is a PDF; $||f||_1 = 1$.
- L^{∞} is the space containing all the (essentially) bounded functions.
- Interpolation property of Lebesgue spaces: Let

$$1 \le p_1 < p_2 \le \infty$$
. Then

$$f \in L^{p_1} \cap L^{p_2} \Rightarrow f \in L^p$$
, for every $p_1 . (7)$

• E.g. If f is a bounded PDF, then $f \in L^p$, for every $p \in [1, \infty]$.

Risk

Let f be unknown and \hat{f}_n be an estimator of it. We define the L^p -risk as

$$\mathcal{R}(\hat{f}_n, f) := \left(\mathbb{E}(\|\hat{f}_n - f\|_p^p)\right)^{1/p}$$

$$= \left(\int_{\mathcal{M}} \cdots \int_{\mathcal{M}} \left(\int_{\mathcal{M}} |\hat{f}_n(x, \mathbf{x}) - f(x)|^p dx\right) \prod_{i=1}^n f(x_i) dx_i\right)^{\frac{1}{p}}.$$
(8)

KDEs Parzen Annals Math Stat (62)

- X is distributed on $\mathcal{M} = \mathbb{R}$.
- CDF: $F(x) = \int_{-\infty}^{x} f(t)dt = \mathbb{P}(X \le x)$.
- Let $x \in \mathbb{R}$. We define the empirical estimator of the CDF

$$\begin{split} \widehat{F}_n(x) &= \frac{\#\{X_i : X_i \le x\}}{\#\{X_i\}} \\ &= \frac{1}{n} \sum_{i=1}^n I(\{X_i \le x\}) \longrightarrow F(x) = \mathbb{P}(X \le x), \quad n \to \infty \end{split}$$

by SLLN and where I the indicator function.

• On the other hand

$$f(x) = \lim_{h \to 0} \frac{F(x+h) - F(x-h)}{2h}.$$
 (9)

Rosenblatt's kernel

Combining the above we set:

$$\hat{f}_{n}^{R}(x) := \frac{1}{2nh} \sum_{i=1}^{n} I(x - h < X_{i} \le x + h)$$

$$=: \frac{1}{nh} \sum_{i=1}^{n} K_{0}\left(\frac{X_{i} - x}{h}\right), \tag{10}$$

where $K_0(u) := \frac{1}{2}I(-1 < u \le 1)$ Rosenblatt's kernel (rectangular kernel). The positive number h is called bandwidth (and it is supposed to be arbitrary small).

- Triangular, Gaussian kernels etc.
- $n \to \infty$ and $h = h_n \to 0$, but we already observe that this has to be done carefully.

Kernel Density Estimators (KDEs)

• More generally $K : \mathbb{R} \to \mathbb{R}$ kernel;

$$\int_{\mathbb{R}} K(z)dz = 1. \tag{11}$$

Kernel density estimator (KDE)

$$\hat{f}_n(x) := \hat{f}_n^K(x; \mathbf{X}) := \frac{1}{nh} \sum_{i=1}^n K(\frac{X_i - x}{h}).$$
 (12)

• $h = h_n \to 0$, when $n \to \infty$; the bandwidth.

Agenda

Target: Well-estimate f by \hat{f}_n .

- (α) Fix assumptions on the densities' class (determine \mathbb{F}).
- (β) Construct some kernels K and therefore estimators \hat{f}_n^*
- (γ) Giving a rate of convergence

$$\sup_{f\in\mathbb{F}} \mathcal{R}(\hat{f}_n^*, f) \le Cn^{-r},\tag{13}$$

with r > 0, to be determined.

 (δ) Prove that

$$\inf_{\hat{f}_n} \sup_{f \in \mathbb{F}} \mathcal{R}(\hat{f}_n, f) \ge cn^{-r}, \tag{14}$$

i.e. we cannot do better, the above r is the optimal one; minimax estimation.

Approaching the problem: an elementary form

- Specify p=2, refer to the corresponding risk as Mean Integrated Squared Error. MISE $(\hat{f}_n, f) := \mathcal{R}(\hat{f}_n, f)^2$.
- Target:

$$MISE(\hat{f}_n, f)^{1/2} \le cn^{-r}$$
, for some $r > 0$. (15)

Decomposition

$$MISE(\hat{f}_n, f) = ||b||_2^2 + ||\sigma^2||_1, \tag{16}$$

where the two terms above are the bias and variance:

$$b(x) := \mathbb{E}\left[\hat{f}_n(x; \boldsymbol{X})\right] - f(x) \tag{17}$$

and

$$\sigma^{2}(x) := \mathbb{E}\left[\left(\hat{f}_{n}(x; \boldsymbol{X}) - \mathbb{E}\left[\hat{f}_{n}(x; \boldsymbol{X})\right]\right)^{2}\right]. \tag{18}$$

We study these two terms independently.

Bounding variance

Proposition

If $K \in L^2$, then for every pdf f

$$\left\|\sigma^2\right\|_1 \le \frac{\|K\|_2^2}{nh},\tag{19}$$

Remarks:

- (α) No assumptions on f; just a pdf!
- (β) $h = h_n \rightarrow 0$, but carefully!

E.g. for $h \sim n^{-(1-r)}$, 0 < r < 1, we derive

$$\|\sigma^2\|_1 \le cn^{-r}.$$

 (γ) Proof: just Fubini-Tonelli Theorem and iid.

Bounding bias: Regularity assumption in f

• Since $\int K = 1$, we simplify

$$b(x) = \int_{\mathbb{R}} K\left(\frac{y-x}{h}\right) (f(y) - f(x)) \frac{dy}{h}$$

$$= \int_{\mathbb{R}} K(z) (f(x+hz) - f(x)) dz.$$
(20)

- Where is the *n*? Inside *h*.
- Here we need some regularity for the pdf to be assumed:

Taylor

We assume that $f \in \mathcal{C}^s$, for some $s \in \mathbb{N}$. Then Taylor's formula asserts

$$f(x + hz) - f(x) = \sum_{\nu=1}^{s-1} \frac{f^{(\nu)}(x)}{\nu!} (hz)^{\nu} + R_s(f), \qquad (21)$$

where

$$R_s(f) := \int_0^1 (hz)^s \frac{(1-t)^{s-1}}{(s-1)!} f^{(s)}(x+thz) dt$$
 (22)

Bias

$$b(x) = \sum_{\nu=1}^{s-1} \frac{f^{(\nu)}(x)}{\nu!} h^{\nu} \int_{\mathbb{R}} z^{\nu} K(z) dz + h^{s} \int_{\mathbb{R}} \int_{0}^{1} \frac{(1-t)^{s-1}}{(s-1)!} f^{(s)}(x+thz) z^{s} K(z) dt dz$$
 (23)

Bounding bias: Moments for the kernel

- The decay is aligned in the powers of h.
- We put the following assumption on the kernel:

Zero moments up to the order s-1:

$$\int_{\mathbb{R}} z^{\nu} K(z) dz = 0, \quad \text{for every } \nu = 1, \dots, s - 1.$$
 (24)

Under these vanishing moments and (23):

$$b(x) = h^{s} \int_{\mathbb{R}} K(z) z^{s} \int_{0}^{1} \frac{(1-t)^{s-1}}{(s-1)!} f^{(s)}(x+thz) dtdz.$$
 (25)

Smoothness spaces naturally pop up

- Recall that we're estimating the square norm of b(x).
- Choosing my kernel such that

$$[K]_s := \int_{\mathbb{R}} |z^s| |K(z)| dz < \infty, \tag{26}$$

Minkowski's inequality for integrals $(\| \int g(\cdot, z) dz \|_p \le \int \|g(\cdot, z)\|_p dz)$ implies:

$$||b||_2 \le \frac{[K]_s}{s!} ||f^{(s)}||_2 h^s.$$
 (27)

Sobolev spaces are present.

Sobolev spaces

Measure the smoothness and integrability of a function. Let $s \in \mathbb{N}$ and $p \ge 1$, the Sobolev space W_p^s , consists of all the functions such that

$$f \in W_p^s \Longleftrightarrow \|f\|_{W_p^s} := \sum_{\nu=0}^s \|f^{(\nu)}\|_p < \infty. \tag{28}$$

Of course $L^p = W_p^0 \supset W_p^1 \supset W_p^2 \supset \cdots$. Let also m > 0. We denote by $W_p^s(m) := \{f : ||f||_{W_p^s} \le m\}$.

Proposition

Let $s \in \mathbb{N}$, m > 0 and K satisfying (11), (24) and (26), then there exists a constant c = c(K, s, m) > 0:

$$||b||_2 \le ch^s$$
, for every $f \in W_p^s(m)$. (29)

Kernels' choice

- A kernel $K : \mathbb{R} \to \mathbb{R}$ as above will be called a kernel of order s; $\mathcal{K}(s)$.
- Of course $\mathcal{K}(S) \subset \mathcal{K}(s)$, for S > s.
- Yes, there exist such kernels. A classical construction involves Legendre polynomials. Another option is by using the properties of the Fourier transform. Plenty of examples appropriate for applications.

Bandwidth selection

By all the previous steps:

$$\sup_{f \in W_2^s(m)} \mathsf{MISE}(\hat{f}_n, f) \le \frac{\|K\|_2^2}{nh} + \left(\frac{[K]_s m}{s!}\right)^2 h^{2s}. \tag{30}$$

• We choose the bandwidth $h = h_n$ st the right hand side to be *minimized*.

Theorem

Let $s \in \mathbb{N}$, $p \ge 2$ and m > 0. Then the KDE \hat{f}_n associated with a kernel K of order s and $h \sim n^{-1/(2s+1)}$ satisfies:

$$\sup_{f \in W_p^s(m)} \mathcal{R}(\hat{f}_n, f) \le c n^{-s/(2s+1)}. \tag{31}$$

Moreover the estimation is minimax.

Perspective

- Given that I don't know of course the smoothness level of f, what can I do?
- ullet Use a kernel of order s, according to how fast is your PC and how much counts for you the accuracy.
- What type of a kernel could work for any smoothness level, optimal?
- Littlewood-Paley/ bump: Infinitely differentiable, Compactly supported, unit around the origin.
- I neither know the p for f...
- Adaptive estimation. Disconnect the integrability levels between the risk and the densities. Different rates. Wavelet estimators.
- Can we do anything with the dimension?
- The question finds answer in the geometry of the data's domain. Density estimation on spheres or manifolds.

Progress in the area: key developments on \mathbb{R}^d

- Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D., Density estimation by wavelet thresholding. *Ann. Stat.* 24, 508-539 (1996).
- Efroimovich, S.Yu., Non-parametric estimation of the density with unknown smoothness. *Ann. Stat.* 36, 1127-1155 (1986).
- Kerkyacharian, G., Lepski, O., Picard, D., Nonlinear estimation in anisotropic multiindex denoising Sparse case. *Theory Probab. Appl.* 52, 58–77 (2008)
- Goldenshluger, A., Lepski, O., Uniform bounds for norms of sums of independent random functions. *Ann. Probab.* 39, 2318-2384 (2011).
- Goldenshluger, A., Lepski, O., Bandwidth selection in kerrnel density estimation: oracle inequalities and adaptive minimax optimality. *Ann. Stat.* 39, 1608-1632 (2011).
- Goldenshluger A., Lepski O., Minimax estimation of norms of a probability density: I. Lower bounds -2020-
- Goldenshluger A., Lepski O., Minimax estimation of norms of a probability density: II. Rate-optimal estimation procedures -2020-

Motivation

Geostatistics, Climatology, Environmental studies, Astrophysics, Oceanography, Seismology...

Manifolds

$$\mathbb{T}^m = \{ x \in \mathbb{R}^m : x_i > 0, x_1 + \dots + x_m < 1 \}.$$
 (32)

SPIDER WEB FROM EXHIBITION ON AIR TOMAS SARACENO

The problem on the sphere.

- The problem has been solved by *needlet estimators* and has been used in applications in astrophysics.
- P. Baldi, G. Kerkyacharian, D. Marinucci, D. Picard, Adaptive density estimation for directional data using needlets. *Ann. Statist.* 37 (2009), no. 6A, 3362-3395.
- Subsampling needlet coefficients on the sphere. *Bernoulli* 15 (2009), no. 2, 438-463.

Preparation

- All the necessary *analysis' background* needed to be built for the *specific* manifold.
- F. Narcowich, P. Petrushev, J. D. Ward, Localized tight frames on spheres. *SIAM J. Math. Anal.* 38 (2006), no. 2, 574-594.
- F. Narcowich, P. Petrushev, J. Ward, Decomposition of Besov and Triebel-Lizorkin spaces on the sphere. *J. Funct. Anal.* 238 (2006), no. 2, 530-564.

Difficulties

- For studying density estimation on a new manifold we need:
- (α) Well defined notion of regularity.
- (β) Smoothness spaces.
- (γ) Operational tools from Analysis and Geometry.
- (δ) Kernels and/or wavelets or a substitute.
- (ε) Extraction of the proper Statistical theorems with precise density estimators.
- When the data are located on another manifold, we have to re-face all these...

Challenge

Work on a general framework unifying as many examples as possible!

Develop the necessary background. Prove the proper statistical results and construct tools for immediate practical use in the most common examples.

• G. Kerkyacharian, P. Petrushev, Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Amer. Math. Soc. 367 (2015), 121–189.

The setting (Roughly speaking)

• Let (\mathcal{M}, ρ, μ) a metric measure space:

$$\mu(B(x,r)) \sim r^d, \quad 0 < d := \text{homogeneous dimension}, \quad (33)$$
 uniformly in $x \in \mathcal{M}, \ r > 0$ and $B(x,r) = \{y : \rho(x,y) < r\}.$

② A suitable operator *L* determines the notion of smoothness and smoothness spaces.

The setting unifies the Euclidean space, the sphere, the ball, general Riemannian manifolds, spaces of matrices, and more.

Euclidean space

$$\mathcal{M}=\mathbb{R}^d$$
 and

$$Lf = -\Delta f = -\left(\partial_1^2 + \dots + \partial_d^2\right)f. \tag{34}$$

Sphere

$$\mathcal{M} = \mathbb{S}^d = \{ x \in \mathbb{R}^{d+1} : ||x|| = 1 \},$$

$$\rho(x, y) = \arccos(\langle x, y \rangle), \tag{35}$$

 μ : the spherical measure and L: the spherical Laplacian.

Ball

$$\mathcal{M} = \mathbb{B}^d = \left\{ x \in \mathbb{R}^d : \|x\| < 1 \right\},$$

$$\rho(x, y) = \arccos\left(\langle x, y \rangle + \sqrt{1 - \|x\|^2} \sqrt{1 - \|y\|^2} \right), \tag{36}$$

$$d\mu(x) = \left(1 - \|x\|^2\right)^{-1/2} dx \tag{37}$$

and

$$L = -\sum_{i=1}^{d} \left(1 - x_i^2\right) \partial_i^2 + 2 \sum_{1 \le i < j \le d} x_i x_j \partial_i \partial_j + d \sum_{i=1}^{d} x_i \partial_i.$$
 (38)

Contributions

- Start the research of Statistics on a general uniform framework.
- Prepare objects ready for use in applications.
- Sernel and Wavelet density estimators.
- Adaptive upper bounds.
- Optimal rate when restrict on the known examples.
- Oracle inequalities.
- General kernels (and simple in the computational sense).
- Expression of the KDEs on several specific examples of common interest.
- Output
 Lower bound: minimax density estimation.
- Open problems.

Statistics and Probability on the general framework

- I. Castillo, G. Kerkyacharian, D. Picard, Thomas Bayes' walk on manifolds. Probab. Theory Related Fields 158 (2014), no. 3-4, 665-710.
- ② G. Kerkyacharian, S. Ogawa, S., P. Petrushev, D. Picard, Regularity of Gaussian processes on Dirichlet spaces. *Constr. Approx.* 47 (2018), no. 2, 277-320.
- G. Cleanthous, g., G. Kerkyacharian, P. Petrushev, D. Picard, Kernel and wavelet density estimators on manifolds or more general metric spaces. *Bernoulli*. 26, No. 3, 1832-1862 (2020).
- 4 G. Cleanthous, g., E. Porcu, Oracle inequalities and upper bounds for kernel density estimators on manifolds or more general metric spaces. Submitted.

Kernel density estimators

- Let $K : [0, \infty) \to \mathbb{R}$ with rapid decay (symbol).
- Let h > 0 a microscopic quantity called "bandwidth". We denote by K_h the function $K_h(\lambda) = K(h\lambda)$, $\lambda \ge 0$. (dilation).
- Spectral theory gives rise to a function

$$K_h^L(x,y)$$
 for every $(x,y) \in \mathcal{M} \times \mathcal{M}$ (kernel), (39)

with convenient properties.

ullet We find the proper conditions on the symbols K and the KDE has an abstract form

$$\hat{f}_{n,h}(x) := \frac{1}{n} \sum_{i=1}^{n} K_h^L(x, X_i). \tag{40}$$

• Construct the above kernels in the examples of special interest.

Kernel density estimators on core examples

•
$$\mathcal{M} = \mathbb{R}^d$$
,
$$\hat{f}_{n,h}(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h^d} K\left(\frac{X_i - x}{h}\right). \tag{41}$$

• $\mathcal{M} = \mathbb{S}^2$.

$$\hat{f}_{n,h}(x) = \frac{1}{n} \sum_{i=1}^{n} \sum_{\ell=0}^{\infty} \frac{2\ell+1}{|\mathbb{S}^2|} K(h\sqrt{\ell(\ell+1)}) C_{\ell}^{1/2}(\langle X_i, x \rangle). \tag{42}$$

Thank you:)

Thank you very much for your attention!!!