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Motivation

Assume that a phenomenon under study is expressed by a random
variable (rv) X distributed on some spaceM.
For having a full understanding of X , we need to know its

Probability Density Function (PDF) fX (x) = f (x), x ∈M.

In practice we rarely know f and we must “learn" it based on our
data.
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Parametric estimation

Methods of parametric estimation go back to Fisher.

If X belongs to a parametric class e.g X ∼ N (µ, σ2), then it
suffices to estimate the corresponding parameters.

But such an assumption may not be valid.
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Nonparametric density estimation: Concept

• Let X be a rv, with an unknown density f .
• Target: Estimate f (x), x ∈M.

• Assume that f belongs to a large function class F (continuous,
differentiable, Lipschitz cont., Sobolev, Nikol’skii, Besov spaces).

• Let X1, . . . ,Xn, n ∈ N, be a random sample; independent rv with
the same —unknown— f (iid).
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Density estimators
• In STAT00 we estimated parameters; for example

µ̂ = X1 + · · ·+ Xn

n = g(X),

where g : Rn → R, g(x1, . . . , xn) = x1+···+xn
n .

• Set X = (X1, . . . ,Xn). The joint density

fX(x) =
n∏

i=1

f (xi ), ∀x = (x1, . . . , xn) ∈Mn. (1)

• Density Estimator: f̂n(x ,X), x ∈M, where

f̂n :M×Mn → R.
• Measure the estimation in both a stochastic and a functional sense; a risk

R(f̂n, f ) = E
(∥∥f̂n − f

∥∥
p

)
, for p ≥ 1 (2)

measures successfully the loss of such an estimation.
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Target:

Construct estimators st the risk over all pdfs lying on a large
function space F to be as small, as possible.
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Minimax density estimation on Rd

The solution on Rd

(α) Smoothness is needed F: e.g. Sobolev spaces W s
p .

(β) Kernel Density Estimators f̂ K
n

(γ) Giving an upper bound

sup
f ∈F
R(f̂ K

n , f ) ≤ Cn−r , r = s
2s + d (3)

(δ) And a Lower bound

inf
f̂n

sup
f ∈F
R(f̂n, f ) ≥ cn−r , (4)

i.e. we cannot do better, the above r is the optimal one; minimax
estimation.



Nonparametric Density Estimation
Concept

Minimax density estimation on Rd

On the rate

The rate for densities on Rd , of smoothness s is n−r ,

r = s
2s + d (5)

• It depends both on the smoothness and the dimension.
• The smoother the density, the faster the estimation.
• The higher the dimension, the worst the estimation.
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An overview of the techniques

Kernel density estimation

• Murray Rosenblatt, Remarks on some nonparametric estimates
of a density function. Ann. Math. Stat. 1956.
• Emanuel Parzen, On estimation of probability density function
and mode Ann. Math. Stat. 1962.

• Alexander Tsybakov, Introduction to nonparametric estimation.



Nonparametric Density Estimation
Concept

An overview of the techniques

Norms in vector spaces

Let V be a vector space. The norm ‖v‖ of any vector v ∈ V is a
way to count the size of v .

E.g. 1. On R2: ‖(x , y)‖ =
√
x2 + y2, for every (x , y) ∈ R2.

A sequence on R2:

~an =
(1
n + 1, 1n2 + 2

)
, n ∈ N.

We say that ~an → (1, 2) ∈ R2, because

∥∥~an − (1, 2)
∥∥ =

∥∥∥(1n , 1n2

)∥∥∥ =

√
1
n2 + 1

n4 → 0.
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An overview of the techniques

Norms for functions

• We need to count distances d(f , g) = ‖f − g‖, between
functions.
• Let p ≥ 1 and g :M→ R, then g ∈ Lp(M) (Lebesgue) if-f

‖g‖p :=
( ∫
M
|g(x)|pdx

)1/p
<∞. (6)

• When p = 1 andM = [0, 1], then

‖g‖1 =
∫ 1

0
|g(x)|dx = Area plot x -axis.
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An overview of the techniques

Remarks

• Clearly when f is a PDF; ‖f ‖1 = 1.
• L∞ is the space containing all the (essentially) bounded
functions.
• Interpolation property of Lebesgue spaces: Let
1 ≤ p1 < p2 ≤ ∞. Then

f ∈ Lp1 ∩ Lp2 ⇒ f ∈ Lp, for every p1 < p < p2. (7)

• E.g. If f is a bounded PDF, then f ∈ Lp, for every p ∈ [1,∞].
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An overview of the techniques

Risk

Let f be unknown and f̂n be an estimator of it. We define the
Lp-risk as

R(f̂n, f ) :=
(
E
(
‖f̂n − f ‖pp

))1/p (8)

=
( ∫
M
· · ·
∫
M

( ∫
M

∣∣f̂n(x , x)− f (x)
∣∣pdx) n∏

i=1
f (xi )dxi

) 1
p
.
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An overview of the techniques

KDEs Parzen Annals Math Stat (62)

• X is distributed onM = R.
• CDF: F (x) =

∫ x
−∞ f (t)dt = P(X ≤ x).

• Let x ∈ R. We define the empirical estimator of the CDF

F̂n(x) = #{Xi : Xi ≤ x}
#{Xi}

= 1
n

n∑
i=1

I({Xi ≤ x}) −→ F (x) = P(X ≤ x), n→∞

by SLLN and where I the indicator function.
• On the other hand

f (x) = lim
h→0

F (x + h)− F (x − h)
2h . (9)
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An overview of the techniques

Rosenblatt’s kernel

Combining the above we set:

f̂ R
n (x) := 1

2nh

n∑
i=1

I
(
x − h < Xi ≤ x + h

)
=: 1

nh

n∑
i=1

K0

(Xi − x
h

)
, (10)

where K0(u) := 1
2 I(−1 < u ≤ 1) Rosenblatt’s kernel (rectangular kernel). The

positive number h is called bandwidth (and it is supposed to be arbitrary small).

• Triangular, Gaussian kernels etc.
• n→∞ and h = hn → 0, but we already observe that this has to be done
carefully.
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An overview of the techniques

Kernel Density Estimators (KDEs)

• More generally K : R→ R kernel;∫
R
K (z)dz = 1. (11)

Kernel density estimator (KDE)

f̂n(x) := f̂ K
n (x ; X) := 1

nh

n∑
i=1

K
(Xi − x

h
)
. (12)

• h = hn → 0, when n→∞; the bandwidth.
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An overview of the techniques

Agenda

Target: Well-estimate f by f̂n.

(α) Fix assumptions on the densities’ class (determine F).
(β) Construct some kernels K and therefore estimators f̂ ∗n
(γ) Giving a rate of convergence

sup
f ∈F
R(f̂ ∗n , f ) ≤ Cn−r , (13)

with r > 0, to be determined.
(δ) Prove that

inf
f̂n

sup
f ∈F
R(f̂n, f ) ≥ cn−r , (14)

i.e. we cannot do better, the above r is the optimal one; minimax
estimation.
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An overview of the techniques

Approaching the problem: an elementary form

• Specify p = 2, refer to the corresponding risk as Mean Integrated Squared
Error. MISE(f̂n, f ) := R(f̂n, f )2.
• Target:

MISE(f̂n, f )1/2 ≤ cn−r , for some r > 0. (15)
• Decomposition

MISE(f̂n, f ) = ‖b‖2
2 + ‖σ2‖1, (16)

where the two terms above are the bias and variance:

b(x) := E
[
f̂n(x ; X)

]
− f (x) (17)

and
σ2(x) := E

[(
f̂n(x ; X)− E

[
f̂n(x ; X)

])2]
. (18)

We study these two terms independently.
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An overview of the techniques

Bounding variance

Proposition

If K ∈ L2, then for every pdf f

∥∥σ2∥∥
1 ≤
‖K‖22
nh , (19)

Remarks:
(α) No assumptions on f ; just a pdf!
(β) h = hn → 0, but carefully!
E.g. for h ∼ n−(1−r), 0 < r < 1, we derive∥∥σ2∥∥

1 ≤ cn−r .

(γ) Proof: just Fubini-Tonelli Theorem and iid.
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An overview of the techniques

Bounding bias: Regularity assumption in f

• Since
∫
K = 1, we simplify

b(x) =
∫
R
K
(y − x

h
)(
f (y)− f (x)

)dy
h (20)

=
∫
R
K (z)

(
f (x + hz)− f (x)

)
dz .

• Where is the n? Inside h.
• Here we need some regularity for the pdf to be assumed:
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An overview of the techniques

Taylor

We assume that f ∈ Cs , for some s ∈ N. Then Taylor’s formula
asserts

f (x + hz)− f (x) =
s−1∑
ν=1

f (ν)(x)
ν! (hz)ν + Rs(f ), (21)

where
Rs(f ) :=

∫ 1

0
(hz)s (1− t)s−1

(s − 1)! f (s)(x + thz)dt (22)
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An overview of the techniques

Bias

b(x) =
s−1∑
ν=1

f (ν)(x)
ν! hν

∫
R
zνK (z)dz

+ hs
∫
R

∫ 1

0

(1− t)s−1

(s − 1)! f (s)(x + thz)zsK (z)dtdz (23)
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An overview of the techniques

Bounding bias: Moments for the kernel

• The decay is aligned in the powers of h.
• We put the following assumption on the kernel:
Zero moments up to the order s − 1:∫

R
zνK(z)dz = 0, for every ν = 1, . . . , s − 1. (24)

Under these vanishing moments and (23):

b(x) = hs
∫
R

K(z)z s
∫ 1

0

(1− t)s−1

(s − 1)! f (s)(x + thz)dtdz. (25)
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An overview of the techniques

Smoothness spaces naturally pop up

• Recall that we’re estimating the square norm of b(x).
• Choosing my kernel such that

[K ]s :=
∫
R
|zs ||K (z)|dz <∞, (26)

Minkowski’s inequality for integrals
(‖
∫
g(·, z)dz‖p ≤

∫
‖g(·, z)‖pdz) implies:

‖b‖2 ≤
[K ]s
s!
∥∥f (s)∥∥

2h
s . (27)

Sobolev spaces are present.
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An overview of the techniques

Sobolev spaces

Measure the smoothness and integrability of a function. Let s ∈ N and p ≥ 1,
the Sobolev space W s

p , consists of all the functions such that

f ∈W s
p ⇐⇒ ‖f ‖W s

p :=
s∑
ν=0

∥∥f (ν)∥∥
p
<∞. (28)

Of course Lp = W 0
p ⊃W 1

p ⊃W 2
p ⊃ · · · .

Let also m > 0. We denote by W s
p (m) := {f : ‖f ‖W s

p ≤ m}.

Proposition

Let s ∈ N, m > 0 and K satisfying (11), (24) and (26), then there exists a
constant c = c(K , s,m) > 0:

‖b‖2 ≤ chs , for every f ∈W s
p (m). (29)
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An overview of the techniques

Kernels’ choice

• A kernel K : R→ R as above will be called a kernel of order s;
K(s).
• Of course K(S) ⊂ K(s), for S > s.

• Yes, there exist such kernels. A classical construction involves
Legendre polynomials. Another option is by using the properties of
the Fourier transform. Plenty of examples appropriate for
applications.
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An overview of the techniques

Bandwidth selection

By all the previous steps:

sup
f ∈W s

2 (m)
MISE

(
f̂n, f

)
≤ ‖K‖

2
2

nh +
( [K ]sm

s!
)2
h2s . (30)

• We choose the bandwidth h = hn st the right hand side to be
minimized.
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An overview of the techniques

Bretagnolle and Huber (’79) and
Haminskii, Ibragimov (’80)

Theorem

Let s ∈ N, p ≥ 2 and m > 0. Then the KDE f̂n associated with a
kernel K of order s and h ∼ n−1/(2s+1) satisfies:

sup
f ∈W s

p (m)
R(f̂n, f ) ≤ cn−s/(2s+1). (31)

Moreover the estimation is minimax.
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Perspective and progress

Perspective

• Given that I don’t know of course the smoothness level of f , what can I do?
• Use a kernel of order s, according to how fast is your PC and how much
counts for you the accuracy.

• What type of a kernel could work for any smoothness level, optimal?
• Littlewood-Paley/ bump: Infinitely differentiable, Compactly supported, unit
around the origin.

• I neither know the p for f ...
• Adaptive estimation. Disconnect the integrability levels between the risk and
the densities. Different rates. Wavelet estimators.

• Can we do anything with the dimension?
• The question finds answer in the geometry of the data’s domain. Density
estimation on spheres or manifolds.
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Perspective and progress

Progress in the area: key developments on Rd

• Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D., Density
estimation by wavelet thresholding. Ann. Stat. 24, 508-539 (1996).
• Efroimovich, S.Yu., Non-parametric estimation of the density with unknown
smoothness. Ann. Stat. 36, 1127-1155 (1986).
• Kerkyacharian, G., Lepski, O., Picard, D., Nonlinear estimation in anisotropic
multiindex denoising Sparse case. Theory Probab. Appl. 52, 58–77 (2008)
• Goldenshluger, A., Lepski, O., Uniform bounds for norms of sums of
independent random functions. Ann. Probab. 39, 2318-2384 (2011).
• Goldenshluger, A., Lepski, O., Bandwidth selection in kerrnel density
estimation: oracle inequalities and adaptive minimax optimality. Ann. Stat. 39,
1608-1632 (2011).
• Goldenshluger A., Lepski O., Minimax estimation of norms of a probability
density: I. Lower bounds -2020-
• Goldenshluger A., Lepski O., Minimax estimation of norms of a probability
density: II. Rate-optimal estimation procedures -2020-
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Motivation

Geostatistics, Climatology, Environmental studies, Astrophysics,
Oceanography, Seismology...
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Manifolds
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Tm =
{
x ∈ Rm : xi > 0, x1 + · · ·+ xm < 1

}
. (32)
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The problem on the sphere.

• The problem has been solved by needlet estimators and has been
used in applications in astrophysics.

• P. Baldi, G. Kerkyacharian, D. Marinucci, D. Picard, Adaptive
density estimation for directional data using needlets. Ann. Statist.
37 (2009), no. 6A, 3362-3395.
• Subsampling needlet coefficients on the sphere. Bernoulli 15
(2009), no. 2, 438-463.



Nonparametric Density Estimation
Density estimation on manifolds

Preparation

• All the necessary analysis’ background needed to be built for the
specific manifold.

• F. Narcowich, P. Petrushev, J. D. Ward, Localized tight frames
on spheres. SIAM J. Math. Anal. 38 (2006), no. 2, 574-594.
• F. Narcowich, P. Petrushev, J. Ward, Decomposition of Besov
and Triebel-Lizorkin spaces on the sphere. J. Funct. Anal. 238
(2006), no. 2, 530-564.
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Challenge

Difficulties

• For studying density estimation on a new manifold we need:

(α) Well defined notion of regularity.
(β) Smoothness spaces.
(γ) Operational tools from Analysis and Geometry.

(δ) Kernels and/or wavelets or a substitute.
(ε) Extraction of the proper Statistical theorems with precise
density estimators.

• When the data are located on another manifold, we have to
re-face all these...



Nonparametric Density Estimation
Density estimation on manifolds

A broad framework

Challenge

Work on a general framework unifying as many examples as possible!

Develop the necessary background. Prove the proper statistical
results and construct tools for immediate practical use in the most
common examples.

• G. Kerkyacharian, P. Petrushev, Heat kernel based
decomposition of spaces of distributions in the framework of
Dirichlet spaces. Trans. Amer. Math. Soc. 367 (2015), 121–189.
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A broad framework

The setting (Roughly speaking)

1 Let (M, ρ, µ) a metric measure space:

µ
(
B(x , r)

)
∼ rd , 0 < d := homogeneous dimension, (33)

uniformly in x ∈M, r > 0 and B(x , r) = {y : ρ(x , y) < r}.
2 A suitable operator L determines the notion of smoothness

and smoothness spaces.

The setting unifies the Euclidean space, the sphere, the ball,
general Riemannian manifolds, spaces of matrices, and more.
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A broad framework

Euclidean space

M = Rd and

Lf = −∆f = −
(
∂2

1 + · · ·+ ∂2
d

)
f . (34)
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A broad framework

Sphere

M = Sd =
{
x ∈ Rd+1 : ‖x‖ = 1

}
,

ρ(x , y) = arccos
(
〈x , y〉

)
, (35)

µ : the spherical measure
and L : the spherical Laplacian.
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A broad framework

Ball

M = Bd =
{

x ∈ Rd : ‖x‖ < 1
}
,

ρ(x , y) = arccos
(
〈x , y〉+

√
1− ‖x‖2

√
1− ‖y‖2

)
, (36)

dµ(x) =
(
1− ‖x‖2)−1/2dx (37)

and

L = −
d∑

i=1

(
1− x2

i
)
∂2

i + 2
∑

1≤i<j≤d

xi xj∂i∂j + d
d∑

i=1

xi∂i . (38)
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A broad framework

Contributions

1 Start the research of Statistics on a general uniform
framework.

2 Prepare objects ready for use in applications.
3 Kernel and Wavelet density estimators.
4 Adaptive upper bounds.
5 Optimal rate when restrict on the known examples.
6 Oracle inequalities.
7 General kernels (and simple in the computational sense).
8 Expression of the KDEs on several specific examples of

common interest.
9 Lower bound: minimax density estimation.
10 Open problems.
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A broad framework

Statistics and Probability on the general framework

1 I. Castillo, G. Kerkyacharian, D. Picard, Thomas Bayes’ walk on
manifolds. Probab. Theory Related Fields 158 (2014), no. 3-4, 665-710.

2 G. Kerkyacharian, S. Ogawa, S., P. Petrushev, D. Picard, Regularity of
Gaussian processes on Dirichlet spaces. Constr. Approx. 47 (2018), no.
2, 277-320.

3 G. Cleanthous, g., G. Kerkyacharian, P. Petrushev, D. Picard, Kernel and
wavelet density estimators on manifolds or more general metric spaces.
Bernoulli. 26, No. 3, 1832-1862 (2020).

4 G. Cleanthous, g., E. Porcu, Oracle inequalities and upper bounds for
kernel density estimators on manifolds or more general metric spaces.
Submitted.
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Kernel Density Estimators

Kernel density estimators

• Let K : [0,∞)→ R with rapid decay (symbol).
• Let h > 0 a microscopic quantity called “bandwidth". We denote
by Kh the function Kh(λ) = K (hλ), λ ≥ 0. (dilation).
• Spectral theory gives rise to a function

KL
h (x , y) for every (x , y) ∈M×M (kernel), (39)

with convenient properties.

• We find the proper conditions on the symbols K and the KDE
has an abstract form

f̂n,h(x) := 1
n

n∑
i=1

KL
h (x ,Xi ). (40)

• Construct the above kernels in the examples of special interest.
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Kernel Density Estimators

Kernel density estimators on core examples

• M = Rd ,

f̂n,h(x) = 1
n

n∑
i=1

1
hd K

(Xi − x
h

)
. (41)

• M = S2,

f̂n,h(x) = 1
n

n∑
i=1

∞∑
`=0

2`+ 1
|S2|

K
(
h
√
`(`+ 1)

)
C1/2
`

(
〈Xi , x〉

)
. (42)
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Kernel Density Estimators

Thank you :)

Thank you very much for your attention!!!
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