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Introduction

Why Spatial Statistics?

Some meteorological data: clear spatial dependence.

e A. Alegria, P. Bisiri, G. Cleanthous, E. Porcu and P. White,

Multivariate isotropic random fields on spheres: Nonparametric
Bayesian modeling and LP fast approximations. Elect. J. Stat.
2021, Vol. 15, No. 1, 2360-2392
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Random fields

A random field can be simply understood as a family of random
variables Z(x) defined over an indexing space X.

Applications

e Medical imagine
e Computer graphics

e Meteorology, Climatology, Environmental science.
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Cosmic Microwave Background (CMB) radiation

e Nobel Prizes for Physics in 1978 and in 2006.
e The main interest in Cosmology.
e Applied Statistical Statistics.

e D. Marinucci, G. Peccati, (2011). Random fields on the sphere:
representation, limit theorems and cosmological applications 389.
Cambridge University Press.

e Balbi, The music of the Big Bang, (2007).

e Statistical Challenges in Modern Astronomy; Book series starting
in 1991 in Penn State.
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CMB

e Consequence of the mechanism of Big Bang.

e The Universe is embedded in a uniform radiation, that provides pictures of its
state nearly 1.37 x 10%° years ago!

e Exactly CMB radiation: the oldest electromagnetic radiation in the Universe.
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Cosmic Microwave Background (CMB) radiation

e Full-Sky maps of radiation (1992) by NASA satellite missions
COBE=-Nobel 2006.

e Issue for data analysis: Full-Sky maps not fully reliable (masked
parts of the sky).
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Framework

e We interpret CMB radiation as a realization of an isotropic RF of finite
variance.

e “Einstein cosmological principle"=-Isotropy.

e Loosely, on sufficiently large distance scales the Universe looks identical
everywhere in the space (homogeneity) and appears the same in every direction
(isotropy).

e The prevailing models for early BB dynamics, predict the random fluctuations
to be Gaussian, or quadratic/cubic powers of a GRF.
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Formally

Definition
Let (Q2, F,P) a probability space and X a topological measure

space.
A Random field {Z(x,w): x € X,w € Q} is a function
Z : X x Q — R, which is (Borel(X) ® F)-measurable.

In Spatial Statistics the index set X represents some space domain
X=RI X=89 X=M.
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Challenge

Random Fields, give answers to problems rising in a wide range of
areas in science and technology!

Challenge: A rigorous study of Random Fields on manifolds.
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Random fields on S?

Consider a random field Z(x), x € S2.

Assumptions:

e [sotropic.

e Zero mean.

Karhunen-Loéve expansion: Z(x) can be represented as

00 L
Z(x) = Z Z armYem(x), x €S2, (1)

£=0 m=—¢

Yym: spherical harmonics —an orthonormal system for [%(S?)—
and

g = /S Z(x) Vim(x)dx. )
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Covariance function

On such a {Z(x) : x € $?}:

Cov(Z(x),

where

Z(y)) =E(Z(x)Z(v))

K(6) = ZA

Pg (cos8),

where Py: Legendre polynomials and

=K(p(x.y)),

A, = E(|azm‘2) Angular power spectrum.

To ensure finite variance

0® =) A0 +1) < o0
£=0

(4)

()
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Leading contributions

e A. Lang, Ch. Schwab, Isotropic Gaussian random fields on the sphere:
regularity, fast simulation and stochastic partial differential equations. Annals
Appl. Probability 25 (2015), 30470-3094.

e G. Kerkyacharian, S. Ogawa, P. Petrushev, D. Picard, Regularity of Gaussian
Processes on Dirichlet spaces. Constructive Approx. 47, 277-320 (2018).

Transfer the study of the random field, to its covariance function and from this,
to the angular power spectrum!
Directions:
@ Approximation
Regularity
Continuity
SPDEs

Simulations

Applied Spatial Statistics: Cosmology and Environmental science.



Spatial Statistics
Introduction

Random fields on the sphere

e Lang-Schwab, AoAP (2015).
e Marinucci-Peccati (2011).
e Yadrenko (1983).

e Ultan Doherthy, Isotropic Random Fields on the Sphere, FYT,
TCD (2021).
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How do we expand the developments?

e Relaxing-modifying assumptions.
e |sotropy?

e Target manifold?

e Adding variables into the study.
e Spatiotemporal Statistics.
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Why do we generalize?

e Are our assumptions proper?
e Did we include in the study everything we need?
e Phenomena lead to new setups.
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Why do we generalize?
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Compact two-point homogeneous spaces

Definition

A metric space (M, p) is called two-point homogeneous when:
For every (xi,x2) € M x M and (y1,y2) € M x M, with

plx, x2) = p(y1, y2),

there exists an isometry mapping x; to y;, i = 1, 2.

e Wang, H.-C., Two-point homogenous spaces. Ann. Math. 55, 177-191
(1952).

e Malyarenko, A., Invariant random fields on spaces with a group action.
Probability and its Applications. Springer, Heidelberg (2013).

e Cillian Doherthy, Random fields on manifolds, FYT, TCD (2021).
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Compact two-point homogeneous spaces

Table
H Manifold [ M7 [ G [ K [ e [ B [ Dimension H
Unit Sphere s? SO(d + 1) SO(d) d—2)/2 | (d—=2)/2 | d=1,2,...
Real P.S. PI(R) SO(d + 1) o(d) (d—2)/2 —1/2 d=2,3,...
Complex P.S. PI(C) SU(d+1) | S(U(d) x U@L)) | (d—2)/2 0 d=4,6,...
Quaternionic P.S. PI(1) Sp(d + 1) Sp(d) x Sp(1) (d—2)/2 1 d=8,12,...
Cayley P.P. PI®(Cay) Fa(—s2) Spin(9) 7 3 d=16

Where the Laplace-Beltrami operator attains the eigenvalues
M=Lll+a+pF+1), £>0, (7)

the basis of the \s-eigenspace: {Y;m, 1 < m < h(MH,0)},

2+ a+B+D)IB+1M(l+a+B+1D)I0+a+1)

h(M?, €)= Mo+ 1Mo +8+2)0T(C+5+1)
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Isotropic random fields

e G. Cleanthous, N, A. Lang and E. Porcu, Regularity, continuity and
approximation of isotropic Gaussian random fields on compact two-point
homogeneous spaces. Stochastic Processes and their Applications. vol 130
issue 8, August 2020, 4873-4891.

{Z(x): xe M} on (Q,F,P).
e Real valued.
e Zero mean and finite variance.
e Gaussian.
e Isotropic.
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Karhunen-Loéve expansion

oo h(M%0)
=> Y Xo.m Ye,m(x) (8)
d m m
/=0 m=1 M 6)
with convergence in L?(Q, L2(M7)).
e Xy m is a sequence of centered uni-variate independent random
variables.
e The (power) spectrum coefficients vy satisfy

v >0 and Zug<oo. (9)
=0
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Covariance

Kz(x,y) = E(Z(x)Z(y)) — E(Z(x))E(Z(y)), x,y € M?
= kz(cos(p(x, y))),

where kz : [-1,1] — R, satisfies

00 (c,8)
P, (t)
kZ(t) - E Vy Za ) te [_17 1]7 (10)
= P)

where Péa”ﬁ) denotes the Jacobi polynomial of order ¢, associated
with the pair (o, 3).
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The behavior of the RF is governed by the spectrum!
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Smoothness

Norm

e Counting the size of objects on a vector space.
e On R?: Let & = (uy, u2), then

Gl = /uf + 3. (11)

Hull

e Metric or distance. Counts how far are the elements of a space,
from each other.

d(d,v) = [|g — V. (12)
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Norms for functions

e We need to count distances d(f,g) = ||f — g||, between
functions.

eletp>1and g: M — R, then g € LP(M) (Lebesgue) if-f
1/p
= x)|Pdx < 00. 13
Il = ( [ leGoreas) (13)
e When p =1 and M = [0, 1], then

1
gl = / lg(x)|dx = Area plot x-axis.
0
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Smoothness

How do we measure the smoothness?

Let o, 8 > —1. A function f : [-1,1] — R, belongs to the weighted
e Lebesgue space Lfa”B) = Lfa,ﬁ)[—l, 1], when

Iz = / F(£)2(1 = £)™(1 + £)dt < oc. (14)

Note that {Plga”@) : £ > 0} is an orthogonal basis.

e Sobolev space W" = M/(’;”B), n € N, when

11 = Il = Z) Hf(mHif < oo (15)
m=|

a+m,B+m)

e Of course Z2=W > W!o>W?2>...
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Smoothness of a Random field

e By Kerkyacharian et al (2018), the smoothness of a Random Field is
equivalent with the smoothness of the covariance (kernel).
e Lang-Schwab (2015), found the Sobolev norms for S¢.

e Cleanthous et al (2020), express the Sobolev smoothness of the RF in terms
of the angular power spectrum.

e The summability of the ps, guarantees already the L%a,ﬁ) membership of the
ck and therefore the RF.
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Smoothness Theorem

Weighted ¢2-summability of the spectrum, is equivalent with
regularity measured in terms of Sobolev spaces!

Let n € N and {Z(x) : x € M9} an isotropic GRF. Then
kz € W" if and only if

o9}

Ikzllfyn ~ > v (£ + 1)1 < o0, (16)
{=0

v

e We proved this result for the more general class of interpolation
spaces, measuring non-integer smoothness.
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Smooth Random fields

e On M9 = S2, the above theorem translates as follows:

o
lkzlfs ~ > AZ(C+ 1) (17)
=0

e Simply taking Ay = (¢ +1)~7, we have
kze W T>s+1 (18)

e Below we draw some (simulated) RFs for 71 = 3 and 75 = 5.
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Smooth Random fields

(a) kz € WL\ W2 and (b) kz € W3\ W4,
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Sample Hélder continuity

Holder spaces

e Let n € Nyg. We denote by C" = C"[—1, 1] the set of all functions
f : [-1,1] — R such that their derivatives up to order n, exist and
are continuous.

n

Fllon -= s FM ()| < oo. 19
Ifllc ;O_lgfgll (t)] < o0 (19)

e Let now N > 0 be a non integer and let n := [N] be the integer
part of N. The Holder space of order N, denoted CN = CN[-1,1],
is defined as the class of all functions f € C" such that

| (t) — F)(s)]

fllen :==||fl|lcrn + sup < o0. 20
IFlew = IFlen +_ sup ey (20)
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Sample Holder continuous random fields

Let v € (0,1). A random field Z : M9 x Q — R is called:

sample v-Holder continuous, when for every w € 2, the sample
function Z(-,w) : M? — R is y-Hélder continuous, i.e. there exist
a constant ¢ > 0 such that

| Z(x,w) — Z(y,w)| < cp(x,y)?, forevery x,y € M. (21)

locally sample v-Holder continuous, when for every w € €, and
every z € MY, there exists a neighbor V' 3 z such that the sample
function Z(-,w) : V — R is «-Holder continuous, i.e. there exist a
constant ¢ = cy > 0 such that

|Z(x,w) = Z(y,w)| < cp(x,y)?, foreveryx,y e V. (22)



Spatial Statistics
Compact two-point homogeneous spaces
Sample Hélder continuity

Sample Holder continuity of the RF

Weighted ¢*-summability of the spectrum, implies Holder
continuity, bounds of the moments of Z(x) — Z(y) and the
existence of a Hélder continuous modification!

Let N > 0. Let {Z(x): x € M9} be an isotropic GRF, whose
spectrum (vy) from (8) satisfies

LENy

[e.e]

Z (€ +1)*N < 0. (23)

Then, the isotropic covariance kernel kz is N-Hélder continuous.
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Moments of Z(x) — Z(y)

Let {Z(x): x € M9} be an isotropic GRF, whose spectrum
(Vg)geNo satisfies (23) for some N € (0,1]. Then, for every p € N,
there exists a constant ¢ = cy,p > 0 such that for every

x,y € M9,

E(1Z(x) = Z(y)I??) < cp(x, )", (24)

v
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A Kolmogorov-Chentsov type theorem

Let {Z(x) : x € M9} be an isotropic GRF, whose spectrum

(ve) yer, satisfies (23) for some N € (0,1]. Then, there exists a
continuous modification of Z which is sample Hélder continuous of
order v € (0, N).
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Truncated approximation

Truncation of a RF

e How do we really work with an IRF?

0o h(M?.0)
=Y 2 Yo m(X) Xt m,
=0 m=1 Md E)

e Qur PC?
e Truncation.
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Truncation

For r € N, we set

r h(M¢,
:Z Z “ Md E)Yém( )Xﬁ,m7

which is apparently a truncated version of the expansion (8) of the
GRF, Z.

e We count the error Z — Z" in the P-a.s and in mixed Lebesgue
norms.
e The decay on the spectrum, guarantees fast approximation!
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Norms for random fields

e Recall that Z : Q x M? — R. We need to measure the integrability in the
spatial domain M¢ and the stochastic domain Q.
e Let p,g > 0. We define the (quasi-)norm

1Z]

pyq = HZHLP(Q;Lq(Md)) (25)
1/p

= (ENZC.)Eopnee) (26)
= (E(/Md |Z(x,w)|qu)p/q) v (27)
- (/Q (/Md|Z(x,w)qu)p/qu(w))l/p. (28)

1ZIBs =E / 1Z(x,w) Pax. (29)
Md

e Eg.



Spatial Statistics
Compact two-point homogeneous spaces

Truncated approximation

Let {Z(x): x € M} be an isotropic GRF, whose spectrum decays
algebraically with order 1 + ¢, € > 0; i.e., there exist ¢, > 0 and ¢y € N
such that for all £ > ¥

ve < cliE. (30)
Then, the series of the truncated RFs (Z r)r converges to the RF Z

@ in LP(Q, L?(M)) for every p > 0. Moreover there exists a constant
€ = Cp,e > 0 such that

|12 -2 < cr /2, (31)

HLP(Q,LZ(Md)) =

@ P-almost surely and for every 0 < v < £/2, the truncated error is
asymptotically bounded by

|12 -2 <r77, P-as (32)

2oy
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Multi-variate random fields on the sphere

Let S := {x e R : ||x|| = 1} and k € N.
A k-variate random field Z : S? x Q — R¥ is called isotropic when it is of
constant mean vector and

Cov(Z(x), Z(y)) = C(p(x,¥))- (33)
Then -
co)=3" a,cl?) (cos0), (34)

where A,: positive definite k X k matrices and

iAnCn(%)(l) € R¥X, (35)
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Karhunen-Loéve expansion: Ma (2006)

Let {V,} sequence of independent random vectors, with

E(V,) = 0 and diagonal Cov(V,). Let U: (d + 1)-dimensional
random vector uniformly distributed on S9, independent of {V,}
and {A,} as in (35).

Then the random field

Z(x) := i A}/N,,CS%) (x'U), (36)
n=0

is k-variate isotropic random field of zero mean and

CH) = i A,,C,g%)(cos 0), (37)
n=0
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Measuring matrices

e A. Alegria, P. Bisiri, G. Cleanthous, E. Porcu and P. White,
Multivariate isotropic random fields on spheres: Nonparametric
Bayesian modeling and LP fast approximations. Elect. J. Stat.
2021, Vol. 15, No. 1, 2360-2392

e Let A,B n x m matrices. The Frobenius inner product

(A, B)F := trace(AB’). (38)
This gives the natural norm

A = (A A)F = ag. (39)

ij
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How do we approximate Z(x)?

Truncation:

R d-1
ZR(x):=>" Aﬁ/Zvnc,f 2 )(x’u), R e N. (40)
n=0
Target: find conditions st ZR — Z and measure the accuracy!
Recall that in the uni-variate case we had the decay of a sequence
(of numbers).

_E(HZ('vw)

= HZHLP(Q L2(S7;R)) H,L)2(Sd;IR{’<))

p/2
—E( [, 1Z6)I3ex)", p=1 (41)
Sd
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Approximation

Let Z(x) a k-variate isotropic random field as in (36) such that

trace(A,) < con~9t1=¢ for somee > 0, (42)

then {ZR(x)}r converges to Z(x) and

|1Z - ZR||p < GQR /2, forevery p > 1. (43)
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Bayesian modeling and applications

A Bayesian model for the C.

e 7 lower triangular, with nonnegative diagonal B,:
A, =B,B). (44)
Propose a Bayesian model by assigning priors to B,'s;

The model: Let B := {B,},>0 independent random matrices of the same type
with B,’s:

For every n > 0:

e iid diagonal elements

e iid off-diagonal elements

[ ]

E((én)n)Z = ]E((I~3n)21)2 =:dp; Z d, < 0. (45)
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Multi-variate random fields

The posterior

Let x1,...,x, €S9 and
z:=(z(x),...,z(xa)), (46)
sampled from the RF.

The posterior P? of B, exists, it is unique and Lipschitz continuous;
small data-change, implies small changes in the posterior
distribution.

Remark: Application of the model to bivariate meteorological data
(Atmospheric pressure, DSRF).
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Phenomena evolving temporally

A phenomenon may present an additional time dependence;
Spatiotemporal random fields.

Z(x,t), xe M, teT. (47)

e A RF {Z(x,t)}: space isotropic and time stationary when
cov(Z(x1,t1), Z(x2, t2)) depends only on p(x1,x2) and (t2 — t1).
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Spatiotemporal statistics

e G. Cleanthous, E. Porcu and P. White, Regularity and Approximation of
Gaussian Random Fields Evolving Temporally over Compact Two-Point
Homogeneous Spaces. TEST, (2021+).

Random fields on M9 x R:

e Approximation

e Regularity

e Covariance modeling for the study of Ozone concentration.

e C. Doherthy.
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Spatiotemporal RFs on M9 x R.

o Let {Z(x, t): xeM? te ]R} space isotropic and time stationary. Then

cov(Z(x1, 1), Z(x2, t2)) = Kis (cos p(x1, %), t2 — t1), (48)
where the function Kis : [-1,1] x R — R is such that
Kis(u,t) = > Ba(t)P1(u), (49)
n=0

for a sequence B, of stationary covariance functions;

o0

Z B.(t)P{?) (1) € R. (50)

n=0
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Periodic phenomena

What if the spatiotemporal phenomenon present time-periodicity?
Is R the ideal time domain?
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Periodic phenomena

Wrap the time to a circle!

S? x S, (51)

is the ideal domain for a spatiotemporal periodic phenomenon on
the Earth.

e A. Alegria, G. Cleanthous, N, E. Porcu and P. White, Gaussian
random Fields on the Hypertorus: theory and applications.

Let di,d>» € N, we work on
T .= SN x §%, (52)

The setting includes the torus as it is isomorphic with St x S!.
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Beyond isotropy

Axial symmetry.
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What is next?

e Combinations of the above.
e Other settings.

e More general manifolds.

e Isotropy?
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Thank you :)

Thank you very much for your attention!
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