
Spatial Statistics

Spatial Statistics

Athanasios G. Georgiadis

Assistant Professor,
Trinity College of Dublin.

SCSS, May 5th 2021



Spatial Statistics

Contents

1 Introduction

2 Compact two-point homogeneous spaces
Smoothness
Sample Hölder continuity
Truncated approximation

3 Directions
Multi-variate random fields
Spatiotemporal statistics
Beyond isotropy
More



Spatial Statistics
Introduction

Why Spatial Statistics?

Some meteorological data: clear spatial dependence.

• A. Alegria, P. Bisiri, G. Cleanthous, E. Porcu and P. White,
Multivariate isotropic random fields on spheres: Nonparametric
Bayesian modeling and L

p fast approximations. Elect. J. Stat.
2021, Vol. 15, No. 1, 2360-2392
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Random fields

A random field can be simply understood as a family of random
variables Z (x) defined over an indexing space X .

Applications

• Medical imagine
• Computer graphics
• Meteorology, Climatology, Environmental science.



Spatial Statistics
Introduction

Cosmic Microwave Background (CMB) radiation

• Nobel Prizes for Physics in 1978 and in 2006.
• The main interest in Cosmology.
• Applied Statistical Statistics.

• D. Marinucci, G. Peccati, (2011). Random fields on the sphere:
representation, limit theorems and cosmological applications 389.
Cambridge University Press.
• Balbi, The music of the Big Bang, (2007).
• Statistical Challenges in Modern Astronomy; Book series starting
in 1991 in Penn State.
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CMB

• Consequence of the mechanism of Big Bang.
• The Universe is embedded in a uniform radiation, that provides pictures of its
state nearly 1.37 ◊ 1010 years ago!
• Exactly CMB radiation: the oldest electromagnetic radiation in the Universe.
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Cosmic Microwave Background (CMB) radiation

• Full-Sky maps of radiation (1992) by NASA satellite missions
COBE∆Nobel 2006.

• Issue for data analysis: Full-Sky maps not fully reliable (masked
parts of the sky).
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Framework

• We interpret CMB radiation as a realization of an isotropic RF of finite
variance.
• “Einstein cosmological principle"∆Isotropy.
• Loosely, on su�ciently large distance scales the Universe looks identical
everywhere in the space (homogeneity) and appears the same in every direction
(isotropy).
• The prevailing models for early BB dynamics, predict the random fluctuations
to be Gaussian, or quadratic/cubic powers of a GRF.
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Formally

Definition
Let (�, F ,P) a probability space and X a topological measure
space.
A Random field {Z (x , Ê) : x œ X , Ê œ �} is a function
Z : X ◊ � æ R, which is (Borel(X ) ¢ F)-measurable.

In Spatial Statistics the index set X represents some space domain
X = Rd , X = Sd , X = M.
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Challenge

Random Fields, give answers to problems rising in a wide range of
areas in science and technology!

Challenge: A rigorous study of Random Fields on manifolds.
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Random fields on S2

Consider a random field Z (x), x œ S2.
Assumptions:
• Isotropic.
• Zero mean.
Karhunen-Loéve expansion: Z (x) can be represented as

Z (x) =
Œÿ

¸=0

ÿ̧

m=≠¸

a¸mY¸m(x), x œ S2, (1)

Y¸m: spherical harmonics —an orthonormal system for L
2(S2)—

and

a¸m =
⁄

S2
Z (x)Ȳ¸m(x)dx . (2)
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Covariance function

On such a {Z(x) : x œ S2}:

Cov
!
Z(x), Z(y)

"
= E

!
Z(x)Z(y)

"
= K

!
fl(x , y)

"
, (3)

where

K(◊) =
Œÿ

¸=0

A¸
2¸ + 1

2fi
P¸(cos ◊), (4)

where P¸: Legendre polynomials and

A¸ := E
!
|a¸m|2

"
Angular power spectrum. (5)

To ensure finite variance

‡2 :=
Œÿ

¸=0

A¸(2¸ + 1) < Œ. (6)
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Leading contributions

• A. Lang, Ch. Schwab, Isotropic Gaussian random fields on the sphere:
regularity, fast simulation and stochastic partial di�erential equations. Annals
Appl. Probability 25 (2015), 30470–3094.

• G. Kerkyacharian, S. Ogawa, P. Petrushev, D. Picard, Regularity of Gaussian
Processes on Dirichlet spaces. Constructive Approx. 47, 277–320 (2018).

Transfer the study of the random field, to its covariance function and from this,
to the angular power spectrum!

Directions:
Approximation
Regularity
Continuity
SPDEs
Simulations
Applied Spatial Statistics: Cosmology and Environmental science.
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Random fields on the sphere

• Lang-Schwab, AoAP (2015).
• Marinucci-Peccati (2011).
• Yadrenko (1983).

• Ultán Doherthy, Isotropic Random Fields on the Sphere, FYT,
TCD (2021).
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How do we expand the developments?

• Relaxing-modifying assumptions.
• Isotropy?
• Target manifold?
• Adding variables into the study.
• Spatiotemporal Statistics.
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Why do we generalize?

• Are our assumptions proper?
• Did we include in the study everything we need?
• Phenomena lead to new setups.
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Why do we generalize?
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Compact two-point homogeneous spaces

Definition
A metric space (M, fl) is called two-point homogeneous when:

For every (x1, x2) œ M ◊ M and (y1, y2) œ M ◊ M, with

fl(x1, x2) = fl(y1, y2),

there exists an isometry mapping xi to yi , i = 1, 2.

• Wang, H.-C., Two-point homogenous spaces. Ann. Math. 55, 177–191
(1952).
• Malyarenko, A., Invariant random fields on spaces with a group action.
Probability and its Applications. Springer, Heidelberg (2013).

• Cillian Doherthy, Random fields on manifolds, FYT, TCD (2021).
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Table

Manifold Md G K – — Dimension

Unit Sphere S
d SO(d + 1) SO(d) (d ≠ 2)/2 (d ≠ 2)/2 d = 1, 2, . . .

Real P.S. Pd (R) SO(d + 1) O(d) (d ≠ 2)/2 ≠1/2 d = 2, 3, . . .

Complex P.S. Pd (C) SU(d + 1) S(U(d) ◊ U(1)) (d ≠ 2)/2 0 d = 4, 6, . . .

Quaternionic P.S. Pd (H) Sp(d + 1) Sp(d) ◊ Sp(1) (d ≠ 2)/2 1 d = 8, 12, . . .

Cayley P.P. P16(Cay) F4(≠52) Spin(9) 7 3 d = 16

Where the Laplace-Beltrami operator attains the eigenvalues

⁄¸ := ¸(¸ + – + — + 1), ¸ Ø 0, (7)

the basis of the ⁄¸-eigenspace: {Y¸,m, 1 Æ m Æ h(Md , ¸)},

h(Md , ¸) := (2¸ + – + — + 1)�(— + 1)�(¸ + – + — + 1)�(¸ + – + 1)
�(– + 1)�(– + — + 2) ¸! �(¸ + — + 1) .
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Isotropic random fields

• G. Cleanthous, N, A. Lang and E. Porcu, Regularity, continuity and
approximation of isotropic Gaussian random fields on compact two-point
homogeneous spaces. Stochastic Processes and their Applications. vol 130
issue 8, August 2020, 4873-4891.

)
Z(x) : x œ Md*

on (�, F ,P).
• Real valued.
• Zero mean and finite variance.
• Gaussian.
• Isotropic.
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Karhunen-Loéve expansion

Z (x) =
Œÿ

¸=0

h(Md ,¸)ÿ

m=1

Û
‹¸

h(Md , ¸) X¸,m Y¸,m(x) (8)

with convergence in L
2(�, L

2(Md)).
• X¸,m is a sequence of centered uni-variate independent random
variables.
• The (power) spectrum coe�cients ‹¸ satisfy

‹¸ Ø 0 and
Œÿ

¸=0
‹¸ < Œ. (9)
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Covariance

KZ (x , y) = E
!
Z (x)Z (y)

"
≠ E

!
Z (x)

"
E

!
Z (y)

"
, x , y œ Md

= kZ
!

cos(fl(x , y))
"
,

where kZ : [≠1, 1] æ R, satisfies

kZ (t) =
Œÿ

¸=0
‹¸

P
(–,—)
¸ (t)

P
(–,—)
¸ (1)

, t œ [≠1, 1], (10)

where P
(–,—)
¸ denotes the Jacobi polynomial of order ¸, associated

with the pair (–, —).
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The behavior of the RF is governed by the spectrum!
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Smoothness

Norm

• Counting the size of objects on a vector space.
• On R2: Let ų = (u1, u2), then

ÎųÎ =
Ò

u2
1 + u2

2 . (11)

• Metric or distance. Counts how far are the elements of a space,
from each other.

d(ų, v̨) = Îų ≠ v̨Î. (12)
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Smoothness

Norms for functions

• We need to count distances d(f , g) = Îf ≠ gÎ, between
functions.
• Let p Ø 1 and g : M æ R, then g œ L

p(M) (Lebesgue) if-f

ÎgÎp :=
1 ⁄

M
|g(x)|pdx

21/p
< Œ. (13)

• When p = 1 and M = [0, 1], then

ÎgÎ1 =
⁄ 1

0
|g(x)|dx = Area plot x -axis.
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Smoothness

How do we measure the smoothness?

Let –, — > ≠1. A function f : [≠1, 1] æ R, belongs to the weighted
• Lebesgue space L2

(–,—) := L2
(–,—)[≠1, 1], when

Îf Î2
L2

(–,—)
:=

⁄ 1

≠1
|f (t)|2(1 ≠ t)–(1 + t)—dt < Œ. (14)

Note that {P(–,—)
¸ : ¸ Ø 0} is an orthogonal basis.

• Sobolev space W n = W n
(–,—), n œ N, when

Îf Î2
W n = Îf Î2

W n
(–,—)

:=
nÿ

m=0

..f (m)..2
L2

(–+m,—+m)
< Œ. (15)

• Of course L2 = W 0 ∏ W 1 ∏ W 2 ∏ · · ·
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Smoothness

Smoothness of a Random field

• By Kerkyacharian et al (2018), the smoothness of a Random Field is
equivalent with the smoothness of the covariance (kernel).
• Lang-Schwab (2015), found the Sobolev norms for Sd .

• Cleanthous et al (2020), express the Sobolev smoothness of the RF in terms
of the angular power spectrum.

• The summability of the ps, guarantees already the L2
(–,—) membership of the

ck and therefore the RF.
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Smoothness

Smoothness Theorem

Weighted ¸2-summability of the spectrum, is equivalent with
regularity measured in terms of Sobolev spaces!

Theorem
Let n œ N and {Z (x) : x œ Md} an isotropic GRF. Then

kZ œ W
n

if and only if

ÎkZ Î2
W n ≥

Œÿ

¸=0
‹2

¸ (¸ + 1)≠2–+2n≠1 < Œ. (16)

• We proved this result for the more general class of interpolation
spaces, measuring non-integer smoothness.
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Smoothness

Smooth Random fields

• On Md = S2, the above theorem translates as follows:

ÎkZ Î2
W s ≥

Œÿ

¸=0
A

2
¸(¸ + 1)2s+1 (17)

• Simply taking A¸ = (¸ + 1)≠· , we have

kZ œ W
s … · > s + 1 (18)

• Below we draw some (simulated) RFs for ·1 = 3 and ·2 = 5.
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Smoothness

Smooth Random fields

(a) kZ œ W
1 \ W

2 and (b) kZ œ W
3 \ W

4.
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Sample Hölder continuity

Hölder spaces

• Let n œ N0. We denote by Cn = Cn[≠1, 1] the set of all functions
f : [≠1, 1] æ R such that their derivatives up to order n, exist and
are continuous.

Îf ÎCn :=
nÿ

m=0
sup

≠1ÆtÆ1

--f (m)(t)
-- < Œ. (19)

• Let now N > 0 be a non integer and let n := [N] be the integer
part of N. The Hölder space of order N, denoted CN = CN [≠1, 1],
is defined as the class of all functions f œ Cn such that

Îf ÎCN := Îf ÎCn + sup
≠1Æt ”=sÆ1

--f (n)(t) ≠ f
(n)(s)

--

|t ≠ s|N≠n < Œ. (20)
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Sample Hölder continuity

Sample Hölder continuous random fields

Let “ œ (0, 1). A random field Z : Md ◊ � æ R is called:

sample “-Hölder continuous, when for every Ê œ �, the sample
function Z (·, Ê) : Md æ R is “-Hölder continuous, i.e. there exist
a constant c > 0 such that

--Z (x , Ê) ≠ Z (y , Ê)
-- Æ cfl(x , y)“ , for every x , y œ Md . (21)

locally sample “-Hölder continuous, when for every Ê œ �, and
every z œ Md , there exists a neighbor V – z such that the sample
function Z (·, Ê) : V æ R is “-Hölder continuous, i.e. there exist a
constant c = cV > 0 such that

--Z (x , Ê) ≠ Z (y , Ê)
-- Æ cfl(x , y)“ , for every x , y œ V . (22)
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Sample Hölder continuity

Sample Hölder continuity of the RF

Weighted ¸1-summability of the spectrum, implies Hölder
continuity, bounds of the moments of Z (x) ≠ Z (y) and the
existence of a Hölder continuous modification!
Theorem

Let N > 0. Let {Z (x) : x œ Md} be an isotropic GRF, whose

spectrum
!
‹¸

"
¸œN0

from (8) satisfies

Œÿ

¸=0
‹¸(¸ + 1)2N < Œ. (23)

Then, the isotropic covariance kernel kZ is N-Hölder continuous.
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Sample Hölder continuity

Moments of Z (x) ≠ Z (y)

Theorem

Let {Z (x) : x œ Md} be an isotropic GRF, whose spectrum!
‹¸

"
¸œN0

satisfies (23) for some N œ (0, 1]. Then, for every p œ N,

there exists a constant c = cN,p > 0 such that for every

x , y œ Md
,

E
!
|Z (x) ≠ Z (y)|2p"

Æ cfl(x , y)2pN . (24)
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Sample Hölder continuity

A Kolmogorov-Chentsov type theorem

Theorem

Let {Z (x) : x œ Md} be an isotropic GRF, whose spectrum!
‹¸

"
¸œN0

satisfies (23) for some N œ (0, 1]. Then, there exists a

continuous modification of Z which is sample Hölder continuous of

order “ œ (0, N).
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Truncated approximation

Truncation of a RF

• How do we really work with an IRF?

Z (x) :=
Œÿ

¸=0

h(Md ,¸)ÿ

m=1

Û
‹¸

h(Md , ¸)Y¸,m(x)X¸,m,

• Our PC?
• Truncation.
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Truncated approximation

Truncation

For r œ N, we set

Z
r (x) :=

rÿ

¸=0

h(Md ,¸)ÿ

m=1

Û
‹¸

h(Md , ¸)Y¸,m(x)X¸,m,

which is apparently a truncated version of the expansion (8) of the
GRF, Z .

• We count the error Z ≠ Z
r in the P-a.s and in mixed Lebesgue

norms.
• The decay on the spectrum, guarantees fast approximation!
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Truncated approximation

Norms for random fields

• Recall that Z : � ◊ Md æ R. We need to measure the integrability in the
spatial domain Md and the stochastic domain �.
• Let p, q > 0. We define the (quasi-)norm

ÎZÎp,q := ÎZÎLp(�;Lq(Md )) (25)

=
1
EÎZ(·, Ê)Îp

Lq(Md )

21/p
(26)

=
1
E

1 ⁄

Md
|Z(x , Ê)|qdx

2p/q21/p
(27)

=
1 ⁄

�

1 ⁄

Md
|Z(x , Ê)|qdx

2p/q
dP(Ê)

21/p
. (28)

• E.g.

ÎZÎ2
2,2 = E

⁄

Md
|Z(x , Ê)|2dx . (29)
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Truncated approximation

Theorem

Let {Z (x) : x œ Md} be an isotropic GRF, whose spectrum decays

algebraically with order 1 + Á, Á > 0; i.e., there exist cú > 0 and ¸0 œ N
such that for all ¸ Ø ¸0

‹¸ Æ cú¸≠1≠Á. (30)

Then, the series of the truncated RFs
!
Z

r "
r converges to the RF Z

1 in L
p!

�, L
2(Md)

"
for every p > 0. Moreover there exists a constant

c = cp,Á > 0 such that

..Z ≠ Z
r ..

Lp(�,L2(Md )) Æ cr
≠Á/2. (31)

2 P-almost surely and for every 0 < “ < Á/2, the truncated error is

asymptotically bounded by

..Z ≠ Z
r ..

L2(Md ) Æ r
≠“ , P-a.s. (32)



Spatial Statistics
Directions

Multi-variate random fields

Multi-variate random fields on the sphere

Let Sd := {x œ Rd+1 : ÎxÎ = 1} and k œ N.
A k-variate random field Z : Sd ◊ � æ Rk is called isotropic when it is of
constant mean vector and

Cov
!
Z(x), Z(y)

"
= C(fl(x , y)). (33)

Then

C(◊) =
Œÿ

n=0

AnC
!

d≠1
2

"
n (cos ◊), (34)

where An: positive definite k ◊ k matrices and
Œÿ

n=0

AnC
!

d≠1
2

"
n (1) œ Rk◊k . (35)
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Multi-variate random fields

Karhunen-Loéve expansion: Ma (2006)

Let {Vn} sequence of independent random vectors, with
E(Vn) = 0 and diagonal Cov

!
Vn

"
. Let U: (d + 1)-dimensional

random vector uniformly distributed on Sd , independent of {Vn}
and {An} as in (35).

Then the random field

Z(x) :=
Œÿ

n=0
A1/2

n VnC

!
d≠1

2

"

n
!
x

ÕU
"
, (36)

is k-variate isotropic random field of zero mean and

C(◊) =
Œÿ

n=0
AnC

!
d≠1

2

"

n (cos ◊), (37)
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Multi-variate random fields

Measuring matrices

• A. Alegria, P. Bisiri, G. Cleanthous, E. Porcu and P. White,
Multivariate isotropic random fields on spheres: Nonparametric
Bayesian modeling and L

p fast approximations. Elect. J. Stat.
2021, Vol. 15, No. 1, 2360-2392
• Let A, B n ◊ m matrices. The Frobenius inner product

ÈA, BÍF := trace
!
ABÕ". (38)

This gives the natural norm

ÎAÎ2
F = ÈA, AÍF =

ÿ

i ,j
–2

ij . (39)
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Multi-variate random fields

How do we approximate Z(x)?

Truncation:

ZR(x) :=
Rÿ

n=0
A1/2

n VnC

!
d≠1

2

"

n
!
x

ÕU
"
, R œ N. (40)

Target: find conditions st ZR æ Z and measure the accuracy!
Recall that in the uni-variate case we had the decay of a sequence
(of numbers).

..Z
..p

p,2 =
..Z

..p
Lp(�,L2(Sd ;Rk)) = E

1..Z(·, Ê)
..p

L2(Sd ;Rk)

2

= E
1 ⁄

Sd
ÎZ(x)Î2

F dx

2p/2
, p Ø 1. (41)



Spatial Statistics
Directions

Multi-variate random fields

Approximation

Theorem
Let Z(x) a k-variate isotropic random field as in (36) such that

trace(An) Æ con
≠d+1≠Á, for some Á > 0, (42)

then {ZR(x)}R converges to Z(x) and

..Z ≠ ZR..
p Æ C0R

≠Á/2, for every p Ø 1. (43)
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Multi-variate random fields

Bayesian modeling and applications

A Bayesian model for the C.

• ÷ lower triangular, with nonnegative diagonal Bn:

An = BnBÕ
n. (44)

Propose a Bayesian model by assigning priors to Bn’s;

The model : Let B̃ := {B̃n}nØ0 independent random matrices of the same type
with Bn’s:
For every n Ø 0:
• iid diagonal elements
• iid o�-diagonal elements
•

E
!
(B̃n)11

"2 = E
!
(B̃n)21

"2 =: dn;
Œÿ

n=0

dn < Œ. (45)



Spatial Statistics
Directions

Multi-variate random fields

The posterior

Theorem
Let x1, . . . , xn œ Sd

and

z := (z(x1)Õ, . . . , z(xn)Õ), (46)

sampled from the RF.

The posterior Pz
of B̃, exists, it is unique and Lipschitz continuous;

small data-change, implies small changes in the posterior

distribution.

Remark: Application of the model to bivariate meteorological data
(Atmospheric pressure, DSRF).
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Spatiotemporal statistics

Phenomena evolving temporally

A phenomenon may present an additional time dependence;
Spatiotemporal random fields.

Z (x , t), x œ M, t œ T. (47)

• A RF {Z (x , t)}: space isotropic and time stationary when
cov(Z (x1, t1), Z (x2, t2)) depends only on fl(x1, x2) and (t2 ≠ t1).
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Spatiotemporal statistics

Spatiotemporal statistics

• G. Cleanthous, E. Porcu and P. White, Regularity and Approximation of
Gaussian Random Fields Evolving Temporally over Compact Two-Point
Homogeneous Spaces. TEST, (2021+).

Random fields on Md ◊ R:
• Approximation
• Regularity
• Covariance modeling for the study of Ozone concentration.

• C. Doherthy.
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Spatiotemporal statistics

Spatiotemporal RFs on Md ◊ R.

• Let
)

Z(x , t) : x œ Md , t œ R
*

space isotropic and time stationary. Then

cov(Z(x1, t1), Z(x2, t2)) = KIS
!

cos fl(x1, x2), t2 ≠ t1
"
, (48)

where the function KIS : [≠1, 1] ◊ R æ R is such that

KIS(u, t) =
Œÿ

n=0

Bn(t)P(–,—)
n (u), (49)

for a sequence Bn of stationary covariance functions;
Œÿ

n=0

Bn(t)P(–,—)
n (1) œ R. (50)
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Spatiotemporal statistics

Periodic phenomena

What if the spatiotemporal phenomenon present time-periodicity?
Is R the ideal time domain?
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Spatiotemporal statistics

Periodic phenomena

Wrap the time to a circle!

S2 ◊ S1, (51)

is the ideal domain for a spatiotemporal periodic phenomenon on
the Earth.

• A. Alegria, G. Cleanthous, N, E. Porcu and P. White, Gaussian
random Fields on the Hypertorus: theory and applications.
Let d1, d2 œ N, we work on

Td1,d2 := Sd1 ◊ Sd2 , (52)

The setting includes the torus as it is isomorphic with S1 ◊ S1.
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Beyond isotropy

Beyond isotropy

Axial symmetry.
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More

What is next?

• Combinations of the above.
• Other settings.
• More general manifolds.
• Isotropy?
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More

Thank you :)

Thank you very much for your attention!


	Introduction
	Compact two-point homogeneous spaces
	Smoothness
	Sample Hölder continuity
	Truncated approximation

	Directions
	Multi-variate random fields
	Spatiotemporal statistics
	Beyond isotropy
	More


