Bayesian and Mixed Bayesian/Likelihood Criteria for Sample Size Determination

Statistics in Medicine, Vol. 16, 769-781 (1997)

Lawrence Joseph, Roxane Du Berger, Patrick Bélisle

October 21, 2021

Sample Sizes

Usually sample sizes are calculated to ensure a certain level of power for significance tests.

But Bayesians often avoid significance tests, so what should they do to determine an appropriate sample size when designing experiments?

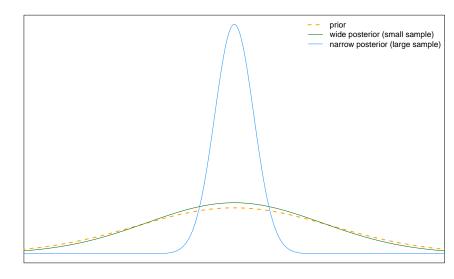
Spiegelhalter Says...

"[In regards to proper Bayesian designed experiments] there is in principle no need for pre-planned sample sizes... Alternatively, it is natural to focus on the eventual precision of the posterior distribution..."

- Spiegelhalter et. al., Section 6.5¹ (emphasis mine).

¹Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). Bayesian approaches to clinical trials and health-care evaluation (Vol. 13). John Wiley & Sons.

Posterior Precision



Credible Intervals

The posterior

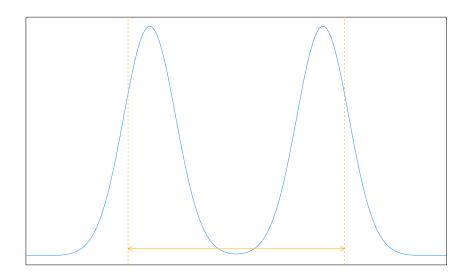
$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{\int_{\Theta} f(x|\theta)f(\theta)d\theta}$$

can be summarised by a credible interval, which is any interval ${\mathcal I}$ that satisfies

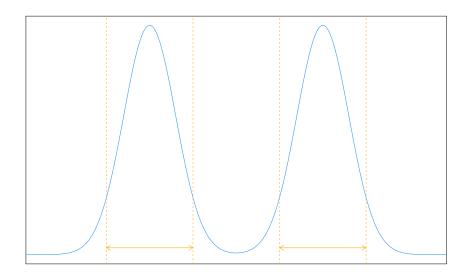
$$\int_{\theta \in \mathcal{I}} f(\theta|x) d\theta = 1 - \alpha$$

where 1 - α is the pre-specified desired coverage probability. The paper focuses on the *Highest Posterior Density* (HPD) interval.

Equal Tailed Intervals



HPD Intervals



Average Coverage Criterion (ACC)

Let a(x, n) be the lower limit of the HPD. If we are set on a fixed length I, but less concerned about the coverage probability, we can calculate the minimum value of n that satisfies:

$$\int_{x \in \mathcal{X}} \left\{ \int_{a(x,n)}^{a(x,n)+l} f(\theta|x) d\theta \right\} f(x) dx \ge 1 - \alpha$$

which tells us that the average HPD computed from an n subset collection of the data space $\mathcal X$ will on average at least be as large as 1 - α .

Average Length Criterion (ALC)

We could do it the other way around: fix the coverage probability $1-\alpha$. We can compute the minimum sample size n that satisfies

$$\int_{x\in\mathcal{X}} I'(x,n)f(x)dx \le I$$

for HPD length I'(x, n), i.e., satisfying:

$$\int_{a(x,n)}^{a(x,n)+l'(x,n)} f(\theta|x) d\theta = 1 - \alpha$$

Modified Worst Outcome Criterion (MWOC)

If averages are not sufficient, and we can ensure that we cover at least $1-\alpha$ of the distribution with HPD length / if we use the MWOC:

$$\inf_{x \in \mathcal{S}} \left\{ \int_{a(x,n)}^{a(x,n)+l} f(\theta|x) d\theta \right\} \ge 1 - \alpha$$

where $S \subseteq \mathcal{X}$.

Differences of Binomial Proportions Example

Table I. Sample sizes for example 1, using fully Bayesian, mixed Bayesian/likelihood, and standard frequentist criteria

	ACC	ALC	MWOC(95)	MWOC(99)	WOC
Full Bayes Mixed Bayes/likelihood	1799 1840	1763 1794	2582 2625	2687 2731	3033 3070
Frequentist	1899		2825	2903	3074

Bayes returns smaller results thanks to the prior!

Mixed Bayesian Approach?

The paper suggests that a non-Bayesian may wish to utilise the above Bayesian methods to determine sample size, even if they intend to analyse the data in a non-Bayesian way!

The simple way they suggest to do this is to use the true prior $f(\theta)$ for the sample size calculations, but then revert to using a uniform when analysing the data.

Question for the group: would the above methods appeal to non-Bayesians for sample size determination?

Further Reading

- Wang, F., & Gelfand, A. E. (2002). A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models. Statistical Science, 193-208.²
- Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). Bayesian approaches to clinical trials and health-care evaluation (Vol. 13). John Wiley & Sons.

²The publisher lists the authors in reverse order for some reason.