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Postdoctoral researcher at UCD, School of Maths and Stats
Affiliated with Insight and Vistamilk SFI Research Centre
PI: Prof. Brendan Murphy

Stone Age:
PhD in Statistics at University of Padova under the
superivison of Prof. Giovanna Menardi
Lucky enough to spend some visiting periods in Nice,
Cambridge and Perugia



 Research interests
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My current research focuses on application-motivated problems
where flexible modelling is needed to handle high-dimensional and
complex structured data



 Framework - Time-dependent data
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Time-dependent data are everywhere
Stock market, economic indices, disease evolution...

A taxonomy is tricky, we may distinguish between two poles
Longitudinal data: few observations, sparse and irregular
measurements
Functional data: large number of observations, regularly
sampled

A lot of attention to the description of time evolutions and
correlation between instants

↓
What about possible heterogeneity among different trajectories?



 Framework
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Increasingly common multivariate
time-dependent data can be
arranged according to a three-way
structure

Three modes of the data introduce three different challenges
rows ←→ heterogeneous units
columns ←→ dependent variables
layers ←→ correlated occasions

Standard clustering methodologies fall short

Aim
Extract information and unveil

parsimonious patterns from such data



 Co-clustering in a nutshell
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Idea
Co-clustering tools may be helpful by summarizing

the data into homogeneous blocks

Given X ∈ Òn×p, the Latent Block Model (LBM) is written as

p(X; Θ) =
∑
z∈Z

∑
w∈W

∏
ik

πzikk

∏
jl

ρ
wjl
l

∏
ijkl

p(xij; θkl)zikwjl

Θ = (πk, ρl, θkl)1≤k≤K,1≤l≤L, with K and L the number of row
and column clusters
z = (zik)1≤i≤n,1≤k≤K and w = (wjl)1≤j≤p,1≤l≤L denote the
subject and variable cluster memberships
(xij |zik = 1,wjl = 1) ∼ p(·; θkl)

Everything boils down to a proper specification of p(xij; θkl)



 Time-dependent Latent Block Model
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In this framework X = {xij(ti)}1≤i≤n,1≤j≤p, ti = (ti,1, . . . , ti,mi)
−→ each single cell is a curve
We resort to the Shape Invariant Model (SIM) defined as

(xij(t)|zik = 1,wjl = 1) = αkl
ij,1 + eα

kl
ij,2m(t − αkl

ij,3; βkl) + εij(t)

m(·) block-specific mean shape function
αkl
ij = (αkl

ij,1, α
kl
ij,2, α

kl
ij,3) ∼ N(µαkl,Σ

α
kl) vector of cell and

block-specific random parameters
εij(t) ∼ N(0,σ2

ε,kl)

Assumption
curves in a block arise as random transformation

of a block-specific mean shape function



 Why SIM and co-clustering?
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It has been used to model functional and longitudinal data
Blocks are characterized by the mean shape function but
heterogeneity within them is appropriately modelled by αkl
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Flexibility
Switching off specific random effects
allow varying the concept of cluster
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 Model estimation - 1
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Maximization of the complete-data log-likelihood

ℓc(Θ, z,w) =
∑
ik
zik log πk+

∑
jl
wjl log ρl+

∑
ijkl

zikwjl log p(xij; θkl)

Double missing structure makes standard EM-algorithm
computationally unfeasible in a co-clustering setting
→ several modifications have been explored: CEM, SEM, VEM...
Additional problem: no closed form expression for

p(xij; θkl) =
∫

p(xij |αkl
ij ; θkl)p(α

kl
ij ; θkl)dα

kl
ij

since αkl
ij enters non-linearly in the model specification



 Model estimation - 2
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We propose the Marginalized SEM-Gibbs (M-SEM) algorithm
At the h-th iteration we alternate these steps

Marg-step: obtain marginal distribution via MC integration

p(xij; θ
(h−1)
kl ) ≃ 1

M

M∑
m=1

p(xij |αkl,(m)
ij ; θ

(h−1)
kl ) ,

with αkl,(1)
ij , . . . , α

kl,(M)
ij drawn fromN(µ

α ,(h−1)
kl ,Σ

α ,(h−1)
kl )

SE-step: generate (z(h),w(h)) via Gibbs sampler

M-step: Estimate Θ̂(h) conditionally on (z(h),w(h))

Mixture proportions updated as usual
θ
(h)
kl = (µ

α ,(h)
kl ,Σ

α ,(h)
kl ,σ

2,(h)
ϵ,kl , β

(h)
kl ) estimated via

approximate maximum likelihood approach for nlme



 Model selection
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Need to select K and L, the number of row and column clusters
+ the random effect configuration (FFF, TFF, TTF...)
In this framework we consider the ICL-BIC criterion

ICL = ℓc(Θ̂, ẑ, ŵ) −
K − 1
2

log n − L − 1
2

log d − KLν
2

log nd

Random effects and time-dependent data could make model
selection more troublesome→ bias towards overestimation

Incorporating prior knowledge and subject-matter
considerations is highly beneficial



 Some results - Pollen data
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Monthly concentration of pollens in French cities in 2016
p = 21 pollens for n = 71 cities over T = 12 months
Aim: identify homogeneous trends in pollen concentration over
the year and across different geographic areas
→ partition of both cities and pollens

Searching for groups of pollens differentiating for either the
period of exhibition or the time span they are present

↓
Only models with y-axis shiǒt (TFF) have been estimated,
αij,2 and αij,3 are switched off



 Some results - Pollen data
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Proper discrimination of pollens
according to their seasonality
+ distinguish tree pollens from weed
and grass ones
Highlight a Mediterranean region



 Some results - COVID evolution
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Data on the first wave (1st March 2020 - 4th July 2020) for
different European countries
n = 38 countries, p = 4 variables (daily cases, daily deaths,
stringency index, government response index), T = 18 weeks
Aim: evaluate differences and similarities among countries and
for different aspects of the pandemic

Differently from pollens data, we have no reason to favour a
specific random effects configuration

All the possible models have been estimated, with
K = 1, . . . , 6 and L = 1, 2, 3

It entails different notions of similarity of virus evolution



 Some results - COVID evolution
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Row groups Column groups

1 log % of cases per 1000
inhabitants

2 log % of deaths per
1000 inhabitants

3 Stringency and gov
response indexes

Model TTT, with K = 2 and L = 3 is selected
Partitions make sense, one is also geographical



 Concluding remarks
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The proposed method partitions three-way matrices in blocks
of homogeneous curves
Some relevant advantages with respect to the competitors

Interpretability of the results
Higher flexibility, different notions of cluster
Both longitudinal and functional data

Directions and open questions
Possible alternative model selection approaches
Different specification for the mean shape function
Bayesian estimation strategies
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