Co-clustering of time-dependent data via the SIM

Trinity College Dublin - Statistics Seminar Series

Alessandro Casa

Joint work with: C. Bouveyron, E. Erosheva & G. Menardi

Faculty of Economics and Management

Free University of Bozen-Bolzano

alessandro.casa@unibz.it

> Two words about me

- I am an Assistant Professor in Statistics at the Faculty of Economics and Management, Free University of Bozen-Bolzano
- o Previously:
 - Postdoctoral researcher at UCD, School of Maths and Stats
 - Affiliated with Insight and Vistamilk SFI Research Centre
 - PI: Prof. Brendan Murphy

o Stone Age:

- PhD in Statistics at University of Padova under the superivison of Prof. Giovanna Menardi
- Lucky enough to spend some visiting periods in Nice,
 Cambridge and Perugia

Research interests

My current research focuses on application-motivated problems where flexible modelling is needed to handle high-dimensional and complex structured data

> Framework - Time-dependent data

- o Time-dependent data are everywhere
 - Stock market, economic indices, disease evolution...
- O A taxonomy is tricky, we may distinguish between two poles
 - Longitudinal data: few observations, sparse and irregular measurements
 - Functional data: large number of observations, regularly sampled
- A lot of attention to the description of time evolutions and correlation between instants

1

What about possible heterogeneity among different trajectories?

> Framework

 Increasingly common multivariate time-dependent data can be arranged according to a three-way structure

- Three modes of the data introduce three different challenges
 - ∘ rows ←
 - → heterogeneous units
 - columns
- → dependent variables

lavers

- **---**→ co
- correlated occasions
- Standard clustering methodologies fall short

Aim

Extract information and unveil parsimonious patterns from such data

> Co-clustering in a nutshell

Idea

Co-clustering tools may be helpful by summarizing the data into homogeneous blocks

o Given $X \in \mathbb{R}^{n \times p}$, the Latent Block Model (LBM) is written as

$$p(\mathbf{X}; \Theta) = \sum_{z \in Z} \sum_{w \in W} \prod_{ik} \pi_k^{z_{ik}} \prod_{jl} \rho_l^{w_{jl}} \prod_{ijkl} p(x_{ij}; \theta_{kl})^{z_{ik}w_{jl}}$$

- $\Theta = (\pi_k, \rho_l, \theta_{kl})_{1 \le k \le K, 1 \le l \le L}$, with K and L the number of row and column clusters
- $\mathbf{z} = (z_{ik})_{1 \le i \le n, 1 \le k \le K}$ and $\mathbf{w} = (w_{jl})_{1 \le j \le p, 1 \le l \le L}$ denote the subject and variable cluster memberships
- $(x_{ij}|z_{ik}=1, w_{jl}=1) \sim p(\cdot; \theta_{kl})$
- Everything boils down to a proper specification of $p(x_{ij}; \theta_{kl})$

> Time-dependent Latent Block Model

- o In this framework $\mathbf{X} = \{x_{ij}(\mathbf{t}_i)\}_{1 \leq i \leq n, 1 \leq j \leq p}$, $\mathbf{t}_i = (t_{i,1}, \dots, t_{i,m_i})$ \longrightarrow each single cell is a curve
- We resort to the Shape Invariant Model (SIM) defined as

$$(\mathbf{x}_{ij}(t)|\mathbf{z}_{ik}=1,\mathbf{w}_{jl}=1) = \alpha_{ij,1}^{kl} + e^{\alpha_{ij,2}^{kl}} \mathbf{m}(\mathbf{t} - \alpha_{ij,3}^{kl}; \boldsymbol{\beta}_{kl}) + \varepsilon_{ij}(\mathbf{t})$$

- $m(\cdot)$ block-specific mean shape function
- $\alpha_{ij}^{kl} = (\alpha_{ij,1}^{kl}, \alpha_{ij,2}^{kl}, \alpha_{ij,3}^{kl}) \sim \mathcal{N}(\mu_{kl}^{\alpha}, \Sigma_{kl}^{\alpha})$ vector of cell and block-specific random parameters
- $\varepsilon_{ij}(t) \sim \mathcal{N}(0, \sigma_{\varepsilon,kl}^2)$

Assumption

curves in a block arise as random transformation of a block-specific mean shape function

> Why SIM and co-clustering?

- It has been used to model functional and longitudinal data
- O Blocks are characterized by the mean shape function but heterogeneity within them is appropriately modelled by α_{ii}^{kl}

> Why SIM and co-clustering?

Why SIM and co-clustering?

Switching off specific random effects allow varying the concept of cluster

Why SIM and co-clustering?

Flexibility

Switching off specific random effects allow varying the concept of cluster

o $\alpha_{ij,1} \alpha_{ij,2} \alpha_{ij,3}$

Model estimation - 1

Maximization of the complete-data log-likelihood

$$\boldsymbol{\ell}_c(\boldsymbol{\Theta}, \mathbf{z}, \mathbf{w}) = \sum_{ik} z_{ik} \log \pi_k + \sum_{il} w_{jl} \log \rho_l + \sum_{iikl} z_{ik} w_{jl} \log p(x_{ij}; \boldsymbol{\theta}_{kl})$$

- Double missing structure makes standard EM-algorithm computationally unfeasible in a co-clustering setting
 → several modifications have been explored: CEM, SEM, VEM...
- Additional problem: no closed form expression for

$$p(x_{ij};\theta_{kl}) = \int p(x_{ij}|\alpha_{ij}^{kl};\theta_{kl})p(\alpha_{ij}^{kl};\theta_{kl})d\alpha_{ij}^{kl}$$

since α_{ij}^{kl} enters non-linearly in the model specification

- Model estimation 2
 - We propose the Marginalized SEM-Gibbs (M-SEM) algorithm
 - At the h-th iteration we alternate these steps
 - Marg-step: obtain marginal distribution via MC integration

$$p(x_{ij}; \theta_{kl}^{(h-1)}) \simeq \frac{1}{M} \sum_{m=1}^{M} p(x_{ij} | \alpha_{ij}^{kl,(m)}; \theta_{kl}^{(h-1)}),$$

with
$$\pmb{\alpha}_{ij}^{kl,(1)},\dots,\pmb{\alpha}_{ij}^{kl,(M)}$$
 drawn from $\mathcal{N}(\pmb{\mu}_{kl}^{\pmb{\alpha},(h-1)}, \Sigma_{kl}^{\pmb{\alpha},(h-1)})$

- SE-step: generate $(\mathbf{z}^{(h)}, \mathbf{w}^{(h)})$ via Gibbs sampler
- M-step: Estimate $\hat{\Theta}^{(h)}$ conditionally on $(\mathbf{z}^{(h)},\mathbf{w}^{(h)})$
 - Mixture proportions updated as usual
 - $\circ \ \theta_{kl}^{(h)} = (\mu_{kl}^{\alpha,(h)}, \Sigma_{kl}^{\alpha,(h)}, \sigma_{\varepsilon,kl}^{2,(h)}, \beta_{kl}^{(h)}) \ \text{estimated via} \\ \text{approximate maximum likelihood approach for nlme}$

Model selection

- Need to select K and L, the number of row and column clusters
 + the random effect configuration (FFF, TFF, TTF...)
- o In this framework we consider the ICL-BIC criterion

$$\mathit{ICL} = \boldsymbol{\ell_c}(\hat{\Theta}, \hat{\mathbf{z}}, \hat{\boldsymbol{w}}) - \frac{\mathit{K} - 1}{2}\log \mathit{n} - \frac{\mathit{L} - 1}{2}\log \mathit{d} - \frac{\mathit{KLv}}{2}\log \mathit{nd}$$

o Random effects and time-dependent data could make model selection more troublesome → bias towards overestimation

Incorporating prior knowledge and subject-matter considerations is highly beneficial

> Some results - Pollen data

- O Monthly concentration of pollens in French cities in 2016 p=21 pollens for n=71 cities over T=12 months
- Aim: identify homogeneous trends in pollen concentration over the year and across different geographic areas
 → partition of both cities and pollens
- Searching for groups of pollens differentiating for either the period of exhibition or the time span they are present

Only models with y-axis shift (TFF) have been estimated, $\alpha_{ij,2}$ and $\alpha_{ij,3}$ are switched off

> Some results - Pollen data

- Proper discrimination of pollens according to their seasonality
 + distinguish tree pollens from weed and grass ones
- o Highlight a Mediterranean region

Some results - COVID evolution

- Data on the first wave (1st March 2020 4th July 2020) for different European countries
- o n=38 countries, p=4 variables (daily cases, daily deaths, stringency index, government response index), T=18 weeks
- Aim: evaluate differences and similarities among countries and for different aspects of the pandemic
- Differently from pollens data, we have no reason to favour a specific random effects configuration
 - All the possible models have been estimated, with K = 1, ..., 6 and L = 1, 2, 3
 - It entails different notions of similarity of virus evolution

Some results - COVID evolution

- Model TTT, with K = 2 and L = 3 is selected
- Partitions make sense, one is also geographical

Concluding remarks

- The proposed method partitions three-way matrices in blocks of homogeneous curves
- o Some relevant advantages with respect to the competitors
 - Interpretability of the results
 - Higher flexibility, different notions of cluster
 - Both longitudinal and functional data
- Directions and open questions
 - Possible alternative model selection approaches
 - Different specification for the mean shape function
 - Bayesian estimation strategies

Some references

Casa, A., Bouveyron, C., Erosheva, E. & Menardi, G. (2021).

Co-clustering of time-dependent data via the Shape Invariant Model.

J Classif, doi.org/10.1007/s00357-021-09402-8

Other relevant references

- O Bouveyron, C., Bozzi, L., Jacques, J. & Jollois, F.X. (2018). The functional latent block model for the co-clustering of electricity consumption curves.

 J R Stat Soc C, 67(4), 897-915.
- O Lindstrom, M.J. (1995). Self-modelling with random shift and scale parameters and a free-knot spline shape function. *Stat Med*, 14(18), 2009-2021.
- O Pinheiro, J. & Bates, D. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. *J Comput Graph Stat*, 4(1), 12-35.
- O Telesca, D. & Inoue, L.Y.T. (2008). Bayesian hierarchical curve registration. J Am Stat Assoc, 103(481), 328-339.