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Covariate shift

refering to the situation where the distributions of the independent variables in the
training and testing data are different, while the conditional distributions of the
dependent variables given the independent ones remain the same between the two sets.

ptrain(x) ̸= ptest(x),

ptrain(y | x) = ptest(y | x)

=⇒ How can use training data efficiently to predict in testing set accurately?

(Trinity College Dublin) Presentation 4 / 29



Redshift estimation

Redshift: measure of the increase in wavelength of photons.
redshift is typically estimated through spectroscopic surveys, which are time- and
cost-intensive.
photometric surveys, which observe more galaxies in a shorter time at a lower cost,
by measuring the magnitudes of the light from galaxies through different colored
filters.

However, the estimated redshift from photometric surveys is subject to the covariate shift
problem (Figure 1).

Figure: Covariate shift in cosmology data.1

1Rafael Izbicki, Ann B. Lee, and Peter E. Freeman. “Photo-z estimation: An example of nonparametric
conditional density estimation under selection bias”. In: The Annals of Applied Statistics 11.2 (2017),
pp. 698–724. doi: 10.1214/16-AOAS1013. url: https://doi.org/10.1214/16-AOAS1013.

(Trinity College Dublin) Presentation 5 / 29

https://doi.org/10.1214/16-AOAS1013
https://doi.org/10.1214/16-AOAS1013


Outline

1 Introduction

2 Preliminaries

3 Methodology

4 Numerical Results

5 Conclusion & Future work

(Trinity College Dublin) Presentation 6 / 29



Hierarchical Bayesian regression model, Sampling method,
Variogram estimation

We adopt Gaussian Processes to model the redshift estimation problem, building on
the work of Almosallam et al.2.
Gaussian Process :

f ∼ GP(m, K)

With m(x) = E(f (x)) and K(xi, xj) = E((f (xi) − m(xi))(f (xj) − m(xj))).
Since the modelling for mean and covariance function is complicated, we use
Hamilton Monte Carlo to sample to the posterior.
Variogram estimation: This method measures the correlation between samples based
on the spatial information (additional features) empirically.

2Ibrahim A. Almosallam, Matt J. Jarvis, and Stephen J. Roberts. “ GPz: non-stationary sparse Gaussian
processes for heteroscedastic uncertainty estimation in photometric redshifts”. In: Monthly Notices of the
Royal Astronomical Society 462.1 (July 2016), pp. 726–739. issn: 0035-8711. doi: 10.1093/mnras/stw1618.
eprint: https://academic.oup.com/mnras/article-pdf/462/1/726/18470400/stw1618.pdf. url:
https://doi.org/10.1093/mnras/stw1618.
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Coping with covariate shift

Methods used to cope with covariate shift in our work:
Kernel mean matching (KMM).
Optimal transport (OT).
Neighbourhood Component analysis (NCA).
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Kernel mean matching (KMM)

Estimating the ratio r(x) = ptest (x)
ptrain(x)

Using moment matching between two distributions : ptest(x) and r(x).ptrain(x). Estimate
r∗ is the MSE optimal solution for :

argmin
r

∥
∫

K(x, .).r(x)ptrain(x)dx −
∫

K(x, .)ptest(x)dx∥2

Since the expectation is computed empirically, we can estimate vector
r∗ := (r∗(x1), r∗(x2), . . . , r∗(xn))T by r̂ = argmin

r
( 1

n2
p
rTKtr,trr − 2

npnq
rTKtr,te1)

Figure: estimate r of two distributions.
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optimal transport (OT)

Monge problem: find the transport map that moves sand mass A (with histogram a) to
sand mass B (with histogram b) at a minimum cost (measured as the Euclidean distance
between the two masses).
The output of the algorithm is the optimal transport plan P̂, which satisfies the marginal
constraints

∑
i P̂i,j = a and

∑
j P̂i,j = b.
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Neighbourhood Component analysis (NCA)

learn a distance function like Mahalanobis distance dM (x, x ′) =
√

(x − x ′)T M (x − x ′)
using information from data.
the probability of xi being a neighbour of xj is:

pij =
exp

(
− ∥Lx i − Lx j∥2

2

)∑
l ̸=i exp

(
− ∥Lx i − Lx l∥2

2

) , pii = 0,

where M = LT L. And, the probability that xi correctly classified is: pi =
∑

j:yj =yi
pij .

The metric is learnt by maximizing
∑

pi .
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Generative model

z = f (x) (1)
f ∼ GP(m, K) (2)

f =


f (x1)
f (x2)

...
f (xn)

 ∼ MVN




m(x1)
m(x2)

...
m(xn)

 ,


K(s1, s1), . . . , K(s1, sn)
K(s2, s1), . . . , K(s2, sn)

. . .
K(sn, s1), . . . , K(sn, sn)


 (3)

xtrain = (x1, x2, .., xt) ∼ N (µ0, σ2
0) (4)

xtest = (xt+1, xt+2, .., xn) ∼ N (µ1, σ2
1) (5)

Mean function: m(x) = ϕ(x)T θ, with ϕi (x) = exp
{

−∥x − pi ∥2

γ2
i

}
(6)

Covariance function: Ki,j = K(si, sj) = λ exp {−α∥si − sj∥2} with α, λ > 0 (7)

with ∥si − sj∥2 = 2
√

(x1i − x1j)2 + ... + (xpi − xpj)2
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Generative model

(a) training and testing covariates (b) Directed acyclic graphical model.
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Predictive distribution

Posterior distribution: ftest | ftrain, xtrain, xtest , s ∼ MVN (m̄, K̄) (8)
With m̄ = m(xtest) + Kte,tr K−1

tr,tr (ftrain − m(xtrain)) (9)
K̄ = Kte,te − Kte,tr K−1

tr,tr Ktr,te (10)

Since we use the noise-free observations model (Eq 1), the predictive posterior
distribution is the same as the posterior distribution above.
Final prediction: take the integral of predictive posterior distribution through the
posterior of parameters imperially.
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Variance adaptation to cope with covariate shift

Motivated from the reweighted loss in Machine learning:

Eptest (x)(l(h(x), y)) =
∑

ptest(x)l(h(x), y)dx

=
∑ ptest(x)

ptrain(x)ptrain(x)l(h(x), y)dx

= Eptrain(x)wl(h(x), y)

(11)

Adjusting the likelihood term in Bayesian framework through the variance: it is more
certain about the training points near the test set, and the uncertainty is increasing
where the training data is far from test data.
Two steps:

Estimating the reciprocal of of the weight η.
Adjusting the variance.
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Estimating the reciprocal of the weight η

Kernel mean matching: the output is the vector of ratio of test distribution to train
distribution, η = 1

r̂

Optimal transport: η = (C ⊙ P̂)1
NCA: learning a distance metric between labeled and unlabeled data based on
assigning pseudo-labels to the data. d(xi , test set) =

∑
xj ∈test set d(xi , xj).

η = d
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Adjusting the variance

The reciprocal of the weight η̂ can be transformed by taking min max normalization.

η̂i = 1 + 2ηi − max(η) − min(η)
2(max(η) − min(η))

Normal distribution: σ̂2 = σ2η̂

Multivariate normal distribution:

ˆCov = diag(σ ⊙ η̂◦ 1
2 ).Corr .diag(σ ⊙ η̂◦ 1

2 )

= (η̂◦ 1
2 )(η̂◦ 1

2 )T ⊙ Cov
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Simulated data

Additional features (spatial information): generated from Mixture Gaussian.

p(s) = 1
2 N

((
−1
−1

)
,

(
4 1
1. 4.

))
+ 1

2 N
((

4
4

)
,

(
1 0.
0. 1.

))
Assign these features randomly for 100 training and 100 testing data points.
Covariates and dependent variables generated as the model in last section.

(Trinity College Dublin) Presentation 20 / 29



Simulated data

Table: Parameters for the true generative model.

Parameters value Prior
µ0 -1.6
µ1 2.5
σ2

0 1.
σ2

1 2.
θ0 3 N (0,100)
θ1 -2 N (0,100)
p0 -1 N (0,100)
p1 2 N (0,100)
γ0 1.2 HalfNormal(0,100)
γ1 4. HalfNormal(0,100)
α 0.3 HalfNormal(0,100)
λ 0.5 HalfNormal(0,100)
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Proposed Models

(a) BRM (b) BRM + SI (c) BRM + SI (Vario)

Figure: Graphical models used in experiments. The dashed line and dashed circle indicate the
addition parts for covariate shift methods.
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Result

Table: Comparison between different models by mean and standard deviation of MSE through 50
running experiments

Model Mean Std
BRM 3.744 3.265
BRM + KMM 3.521 2.855
BRM + NCA 3.179 2.851
BRM + OT 3.903 3.809
BRM + SI 1.871 1.769
BRM + SI + KMM 2.739 2.283
BRM + SI + NCA 4.053 8.838
BRM + SI + OT 2.497 3.292
BRM + SI (Vario) 4.425 2.533
BRM + SI + KMM (Vario) 5.437 2.654
BRM + SI + NCA (Vario) 5.795 4.121
BRM + SI + OT (Vario) 5.559 3.349

(Trinity College Dublin) Presentation 23 / 29



Result

(a) BRM error (b) BRM + SI error (c) BRM + SI (Vario) error

Figure: The bar chart for MSE of each model, collected through 50 experiments.
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Result

(a) BRM predictions (b) BRM + SI predictions (c) BRM + SI (Vario)

Figure: Predictive distributions of models, extracted from one experiment.
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Conclusion

The good result in applying the KMM and NCA methods to the Bayesian regression
model supported for the argument that covariate shift methods only work in case the
model is misspecified.
The variogram estimation error has strong effect to the predictive distribution.
While the model incorporating spatial information undoubtedly achieved the best
results, it’s unlikely that we can achieve a truly generative model in this particular
case.
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Future work

Exploring the extent of model misspecification required for the covariate shift
methods to improve predictions.
application of the covariate shift methods to cosmological data, which will require
expanding models to handle multivariate features.
Improve model scalability for larger datasets.
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Thank you for your listening
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